Standard for

Distribution Line Design Overhead

These standards created and made available are for the construction of Ergon Energy infrastructure. These standards ensure meeting of Ergon Energy's requirements. External companies should not use these standards to construct non-Ergon Energy assets.

If this standard is a printed version, to ensure compliance, reference must be made to the Ergon Energy internet site www.ergon.com.au to obtain the latest version.

<table>
<thead>
<tr>
<th>Approver</th>
<th>Jason Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>If RPEQ sign off required insert details below.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ergon Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certified Person name and Position</td>
</tr>
<tr>
<td>Carmelo Noel – Engineering Manager Distribution Network Standards</td>
</tr>
</tbody>
</table>

Abstract: Design standards for overhead line design
Keywords: distribution, design, design manual, overhead
Standard for Distribution Line Design Overhead

Revision history

<table>
<thead>
<tr>
<th>Revision date</th>
<th>Version number</th>
<th>Author</th>
<th>Description of change/revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/05/2014</td>
<td>1.0</td>
<td>Carmelo Noel</td>
<td>Original Issue</td>
</tr>
<tr>
<td>06/06/2016</td>
<td>2.0</td>
<td>Rao Margani</td>
<td>Aircraft Warning Marker details added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carmelo Noel</td>
<td>Composite crossarm application</td>
</tr>
</tbody>
</table>

Document approvals

<table>
<thead>
<tr>
<th>Name</th>
<th>Position title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason Hall</td>
<td>GM Engineering Standards & Technology</td>
<td>J. Hall</td>
<td></td>
</tr>
</tbody>
</table>

Stakeholders / distribution list

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmelo Noel</td>
<td>Engineering Manager Distribution Network Standards</td>
<td>Endorse</td>
</tr>
<tr>
<td>Keegan Oliver</td>
<td>Regional Asset Manager North</td>
<td>Endorse</td>
</tr>
<tr>
<td>David Gray</td>
<td>Regional Asset Manager Central</td>
<td>Endorse</td>
</tr>
<tr>
<td>Dave Shephard</td>
<td>Regional Asset Manager South</td>
<td>Endorse</td>
</tr>
<tr>
<td>Kevin Hunter</td>
<td>Manager Lines Design</td>
<td>Endorse</td>
</tr>
<tr>
<td>Danny Miles</td>
<td>Lines Design Engineering Manager</td>
<td>Endorse</td>
</tr>
<tr>
<td>Ken Lewis</td>
<td>Engineering Manager Maintenance and Refurbishment</td>
<td>Endorse</td>
</tr>
<tr>
<td>Jeff Shears</td>
<td>Senior Engineer Line Maintenance Standards</td>
<td>Endorse</td>
</tr>
</tbody>
</table>
Table of Contents

1. Overview .. 1
 1.1 Purpose ... 1
 1.2 Scope .. 1

2. References .. 1
 2.1 Ergon Energy controlled documents ... 1
 2.2 Other documents ... 2

3. Legislation, regulations, rules, and codes .. 2

4. Definitions, Abbreviations and Acronyms ... 3
 4.1 Definitions ... 3
 4.2 Abbreviations ... 3
 4.3 Acronyms ... 3

5. Design Summary .. 4
 5.1 Limit State Design ... 4
 5.1.1 The Ultimate Strength Limit State Condition ... 4
 5.1.2 The Maintenance Load Condition .. 4
 5.1.3 The Sustained Load Condition ... 5
 5.2 Design Wind Pressures .. 5
 5.2.1 Special Situations .. 6
 5.2.2 Maintenance Wind Pressures .. 6
 5.2.3 Wind Pressures for Clearances .. 6

6. Conductor Design .. 7
 6.1 Standard Conductor Applications .. 7
 6.1.1 Conductor Selection ... 7
 6.1.2 Conductor Degradation ... 7
 6.1.3 Conductor Tensions ... 8
 6.1.4 Conductor Layout Temperature ... 8
 6.1.5 Conductor Mid-Span Clearances ... 9
 6.1.6 Conductor Vibration Protection ... 9
 6.2 Conductor Sag and Tension .. 9
 6.2.1 Parabola vs Catenary Assumptions ... 9
 6.2.2 Sag ... 9
 6.2.3 Slack .. 10
 6.2.4 Factors that Affect Conductor Tension ... 10
 6.2.5 Ruling Span ... 11
 6.2.6 Weight Span .. 11
 6.2.7 Wind Span .. 11
 6.2.8 Conductor Tension Limitations ... 11
 6.3 Standard Conductors .. 13

7. Poles .. 18
 7.1 Hardwood Pole Tip Loads ... 18
 7.1.1 Foundation Loads .. 19
 7.1.2 Foundations in rock .. 19
 7.1.3 Poles used for Transformer Structures ... 20
 7.1.4 Difficulties in Sourcing 12.5 and 14m 12kN Hardwood Poles 20
10.1.3 Insulator Selection with Regard to Pollution ... 40

11. Pole Structures .. 46

11.1 Structure Applications ... 46

11.1.1 Urban Applications .. 46

11.1.2 Rural Applications .. 46

11.2 Intermediate Urban 11kV TRIDENT Constructions – Duties for common applications .. 47

11.3 Intermediate Urban 22kV TRIDENT Constructions – Duties for common applications .. 48

11.4 Intermediate Urban 33kV DELTA Constructions – Duties for common applications .. 49

11.5 Intermediate Rural 11kV DELTA Constructions – Duties for common applications .. 50

11.6 Intermediate Rural 22kV DELTA Constructions – Duties for common applications .. 51

11.7 Intermediate Rural 33kV DELTA Constructions – Duties for common applications .. 52

11.8 Strain / Termination Urban TRIDENT 11/22kV Poles – Stay requirements for common applications .. 53

11.9 Strain / Termination Urban TRIDENT 11/22kV Poles – Stay requirements for common applications .. 54

11.10 Strain / Termination Urban 33kV Poles – Stay requirements for common applications .. 55

11.11 Strain / Termination Urban 33kV Poles – Stay requirements for common applications .. 56

11.12 Strain / Termination Rural 11kV Poles – Stay requirements for common applications .. 57

11.13 Strain / Termination Rural 11kV Poles – Stay requirements for common applications .. 58

11.14 Strain / Termination Rural 22kV Poles – Stay requirements for common applications .. 59

11.15 Strain / Termination Rural 22kV Poles – Stay requirements for common applications .. 60

11.16 Strain / Termination Rural 33kV Poles – Stay requirements for common applications .. 61

11.17 Strain / Termination Rural 33kV Poles – Stay requirements for common applications .. 62

12. Layout Clearances ... 63

12.1 Conductor Heights ... 63

12.2 Minimum Clearances – Distribution and Sub-transmission .. 65

12.3 Minimum Clearances – Low Voltage Service (From Ground and Structures) 67

12.4 Minimum Separation of Conductors of Different Circuits ... 69

12.4.1 Circuits on a Common Support ‘x’ .. 69

12.4.2 Circuits Non-Attached to Common Support ‘y’ (Includes Crossings) 70

12.5 Criteria for Intercircuit Clearances ... 71

12.5.1 Clearance over Public Lighting .. 71

12.5.2 Intercircuit Clearances at Midspan ... 71

12.5.3 Minimum Design Clearance at Pole .. 72

12.6 Crossarm Separation for Same Circuit ... 73
12.7 Crossarm Separation for Different Circuits .. 75

13. Agreements .. 77
 13.1 QR Design requirements .. 77
 13.1.1 Span Lengths .. 77
 13.1.2 Pole Location .. 77
 13.1.3 Coach Screws .. 77
 13.1.4 Mid Span Joints ... 77
 13.1.5 Electrical Connections ... 77
 13.1.6 Insulation .. 77
 13.1.7 Crossing Angle ... 77
 13.1.8 Low Voltage (650V and below) Lines – Stays and Overhead Earth Wires 77
 13.1.9 Crossings .. 77
 13.1.10 Clearances .. 77
 13.1.11 Pole raisers ... 77
 13.1.12 Intermediate Structures .. 78
 13.1.13 Procedure to be Followed .. 78
 13.2 Powerline Warning Markers ... 79
 13.2.1 Aircraft Warning Markers .. 79
 13.2.2 Non Aircraft Warning Markers ... 79
 13.2.3 Powerline Warning Marker Erection Detail ... 81
 13.3 Procedures for Obtaining Sanction of Water Crossings 82
 13.3.1 Purpose ... 82
 13.3.2 Scope .. 82
 13.3.3 Definitions .. 83
 13.3.4 Procedure .. 83
 13.4 Flowchart 1 ... 84
 13.5 Flowchart 2 ... 85
 13.5.1 Contact Details for Maritime Safety Queensland 88
 13.5.2 Contact Details for Maritime Safety Queensland (Tidal Information) 88
 13.5.3 Contact Details for Maritime Safety Queensland (Charts) 88
 13.5.4 References: .. 89
 13.6 Guidelines for the Placement of Warning Signs of Water Crossings and Boat Ramps (Launching Facilities) ... 89

14. Electrical Design .. 91
 14.1 Conductor Layout Temperatures ... 91
 14.1.1 Ambient Conditions for Thermal Ratings ... 91
 14.1.2 Normal Thermal Rating .. 91
 14.1.3 Emergency Thermal Rating ... 91
 14.2 Conductor Thermal Ratings .. 93
 14.3 Sequence Impedances ... 95
 14.4 Electro-Magnetic Fields (EMF) .. 96

15. Appendix A – Overhead Design Programs .. 97
 15.1 Main Program Features .. 97
 15.1.1 Overview ... 97
 15.1.2 Program Installation Steps .. 97
 15.1.3 Main Menu ... 97
 15.1.4 Operating Instructions .. 97
 15.1.5 General Controls ... 97
 15.2 Conductor Selection ... 98
Table 6-1 – Indication of relative corrosion performance of conductors ... 8
Table 6-2 – Standard Applications for AAC Conductors .. 13
Table 6-3 – Standard Applications for AAAC, ACSR, SC/GZ and SC/AC Conductors (Rural Only) ... 14
Table 6-4 – Standard Conductors Electrical and Mechanical Properties .. 15
Table 6-5 – Superseded Conductors Electrical and Mechanical Properties 16
Table 6-6 – Stringing Table for Services ... 17
Table 7-1 – Acceptable Species for Poles .. 26
Table 7-2 – Concrete Poles Diameters and Masses .. 27
Table 7-3 – V.P.I. Wood Poles Diameters and Maximum Masses ... 28
Table 7-4 – Steel Poles Diameters and Masses .. 29
Table 8-1 Comparison of Timber and Composite Cross-section Short-term Ultimate Strengths 33
Table 9-1 – Eyebolt Strength .. 35
Table 9-2 – Staywire Strength .. 35
Table 9-3 – Stay Insulator .. 35
Table 9-4 – Allowable Limit State Loads (in kN) ... 39
Table 10-1 – Surface Creepage Length with regards to Pollution .. 40
Table 10-2 – Pin Insulators Deviation Angle Limits ... 42
Table 11-1 – Specifications for Urban Intermediate Wood Pole (11kV) .. 47
Table 11-2 – Specifications for Urban Intermediate Wood Pole (22kV) ... 48
Table 11-3 – Specifications for Urban Intermediate Wood Pole (33kV) ... 49
Table 11-4 – Specifications for Rural Intermediate Wood Pole (11kV) ... 50
Table 11-5 – Specifications for Rural Intermediate Wood Pole (22kV) ... 51
Table 11-6 – Specifications for Rural Intermediate Wood Pole (33kV) ... 52
Table 11-7 – Stay Requirements for Urban Strain/Termination Wood Pole (11/22kV, Cyclonic Area) .. 53
Table 11-8 – Stay Requirements for Urban Strain/Termination Wood Pole (11/22kV, Non-cyclonic Area) .. 54
Table 11-9 – Stay Requirements for Urban Strain/Termination Wood Pole (33kV, Cyclonic Area) 55
Table 11-10 – Stay Requirements for Urban Strain/Termination Wood Pole (33kV, Non-Cyclonic Area) .. 56
Table 11-11 – Stay Requirements for Rural Strain/Termination Wood Pole (11kV, Cyclonic Area) 57
Table 11-12 – Stay Requirements for Rural Strain/Termination Wood Pole (11kV, Non-Cyclonic Area) .. 58
Table 11-13 – Stay Requirements for Rural Strain/Termination Wood Pole (22kV, Cyclonic Area) 59
Table 11-14 – Stay Requirements for Rural Strain/Termination Wood Pole (22kV, Non-Cyclonic Area) .. 60
Table 11-15 – Stay Requirements for Rural Strain/Termination Wood Pole (33kV, Cyclonic Area) 61
Table 11-16 – Stay Requirements for Rural Strain/Termination Wood Pole (33kV, Non-Cyclonic Area) .. 62
Table 11-1 – Minimum Clearances – Distribution and Sub-Transmission .. 66
Table 11-2 – Minimum Clearances – Low Voltage Service (From Ground and Structures) 68
Table 12-3 – Minimum Clearances for Circuits on a Common Support ‘x’ 69
Table 12-4 – Minimum Clearances for Circuits Non-Attached to Common Support ‘y’ 70
Table 13-1 – Vertical Clearances for Ergon Conductors and Railway Equipment 78
Table 13-2 – Marker Product Information – Aircraft warning Markers .. 79
Table 13-3 – Marker Product Information – Non Aircraft Warning Markers 80
Table 14-1 – Conductor Layout Temperatures ... 92
Table 14-2 – Conductor Thermal Ratings for Areas North and Central (Far North, North Qld, Mackay, Capricornia) ... 93
Table 14-3 – Conductor Thermal Ratings for Areas South (Wide Bay, South West) 94
Table 14-4 – Positive, Negative and Zero Sequence Impedances of Standard Conductors 95
Table 16-1 – V.P.I. Wood Poles Net Allowable Pole Tip Loads (Non-Cyclonic Regions) 189
Table 16-2 – V.P.I. Wood Poles Net Allowable Pole Tip Loads (Cyclonic Regions) 190
Table 16-3 – V.P.I. Wood Poles Net Allowable Pole Tip Loads (Sustained Loads) 191
Table 16-4 – Steel Poles Net Allowable Pole Tip Loads (Non-Cyclonic Regions) 192
Table 16-5 – Steel Poles Net Allowable Pole Tip Loads (Cyclonic Regions) 193
Table 16-6 – Steel Poles Net Allowable Pole Tip Loads (Sustained Loads) 194
Table 16-7 – Concrete Poles Net Allowable Pole Tip Loads (Non-Cyclonic Regions) 195
Table 16-8 – Concrete Poles Net Allowable Pole Tip Loads (Cyclonic Regions) 196
Table 16-9 – Concrete Poles Net Allowable Pole Tip Loads (Sustained Loads) 197
Table of Figures

Figure 7-1 – Pole Identification Disk ... 25
Figure 9-1 – Calculation for Horizontal Load on a Stay .. 36
Figure 9-2 – Calculation Variables for Stay Attachments Not Close to Load Centre ... 36
Figure 9-3 – 1.5m Stay Offsets for Line Deviations above 45° 38
Figure 10-1 – Pin and Post Insulators Selection Guide (11/22/33kV) 43
Figure 10-2 – Pin, Post and Strain Insulators Selection Guide (S.W.E.R.) 44
Figure 10-3 – Strain Insulators Selection Guide (11/22/33kV) 45
Figure 12-1 – 11/22/33kV Construction Conductor Heights 63
Figure 12-2 – 11/22/33kV Construction Conductor Heights continued 64
Figure 12-3 – Notes for Table 12-1 – Minimum Clearances – Distribution and Sub-Transmission Error! Bookmark not defined.
Figure 12-4 – Notes for Table 12-2 – Minimum Clearances – Low Voltage Service (From Ground and Structures) ... 67
Figure 12-5 – Circuits on a Common Support ‘x’ .. 69
Figure 12-6 – Circuits Non-Attached to Common Support ‘y’ 70
Figure 12-7 – Clearance over Public Lighting .. 71
Figure 12-8 – Intercircuit Clearances at Midspan .. 71
Figure 12-9 – Minimum Design Clearance at Pole .. 72
Figure 12-10 – Crossarm Separation for a HV Circuit 73
Figure 12-11 – Crossarm Separation for a LV Circuit .. 74
Figure 12-12 – Crossarm Separation for Different HV Circuits 75
Figure 12-13 – Crossarm Separation for Different HV and LV Circuits 76
Figure 13-1 – Number of Markers per Span Length .. 81
Figure 15-1 – Multiple Spans .. 110
Figure 15-2 – Delta to Vertical Conductor Configuration 114
Figure 15-3 – Multiple Span Construction ... 122
Figure 18-1 – Waterways Crossing Sign – Small Overhead Powerline Warning Label ... 199
Figure 18-2 – Waterways Crossing Sign – Crossing Awareness 199
Figure 18-3 – Waterways Crossing Sign – Submarine Cable Warning Sign 201
Figure 18-4 – Waterways Crossing Sign – Signage Placement - Sample Plan 202
Figure 18-5 – Waterways Crossing Sign – Conductor Heighting – Sample Plan 203
Figure 18-6 – Waterways Crossing Sign – Sign Assembly 204
Figure 18-7 – Waterways Crossing Sign – Support Post 205
Figure 18-8 – Waterways Crossing Sign – Stiffener Rail and Connection Strap 206
1. OVERVIEW

1.1 Purpose

This Standard for Distribution Line Design Overhead has been compiled in order to provide support for layout staff and asset managers in the application of Ergon Energy Corporation’s Construction Standards.

It replaces the content in Blue Binder (Design Manual) overhead section currently in circulation. This section of the Blue Binder can be disposed of accordingly. All references to distribution line design overhead shall be carried in accordance with this document.

1.2 Scope

This standard contains design information and guidelines necessary to allow use of the Overhead Construction Standards structures in a manner consistent with optimum economic, reliability and safety objectives.

It is proposed that the standard will be expanded in conjunction with future issues of the Overhead Construction Manual.

The provisions of this standard are in accordance with relevant Australian Standards and / or recognised electricity design practice and have RPEQ sign off. Designs carried out in accordance with this standard can be considered to comply in this regard.

This standard is based on the current design philosophies of Limit State design which supersede the Working Load Approach.

A key element of this design standard is the provision of the design software, developed in Visual Basic, which support the standard range of conductor and structure types. Descriptions of these programs are detailed in Appendix A – Overhead Design Programs. Duties for structures in commonly used situations are also tabulated within the document.

This design software is proposed as a basic tool. Some of the functions of the design software have been incorporated into the CATAN design and layout package. The base data and assumptions underlying the design software are also provided.

Support for this design standard is available from the Distribution Network Standards staff as follows:

- Overhead: Craig Avenell, Jeff Guy or Horig Candice
- Underground & Public Lighting: Adam Bletchly or Kim Slater
- Materials: Peter Beikoff
- Estimating & Compatible Units: Darren Sayers

2. REFERENCES

2.1 Ergon Energy controlled documents

NIL
2.2 Other documents

<table>
<thead>
<tr>
<th>Document number or location (if applicable)</th>
<th>Document name</th>
<th>Document type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 1163</td>
<td>Cold-formed structural steel hollow sections</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>AS 1720.1</td>
<td>Timber structures - Design methods</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>AS 1824.2-1985</td>
<td>AS 1824.2-1985: Insulation coordination (phase-to-earth and phase-to-phase, above 1 kV) - Application guide</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>AS 3891.1-2008</td>
<td>Air navigation - Cables and their supporting structures - Marking and safety requirements - Permanent marking of overhead cables and their supporting structures for other than planned low-level flying</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>AS6947-2009</td>
<td>Crossing of Waterways by Electricity Infrastructure</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>AS/NZS 7000:2010</td>
<td>Overhead line design - Detailed procedures</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>CS000501F.113</td>
<td>Installation of permanent markers on overhead cables and their supporting structures indemnity form</td>
<td>Ergon Energy document</td>
</tr>
<tr>
<td>C(b)1-1991 (Superseded)</td>
<td>Electricity Supply Association of Australia (ESAA) – Guidelines for Design and Maintenance of Overhead distribution and Transmission Lines</td>
<td>ESAA Guidelines</td>
</tr>
<tr>
<td>CTS06613-13</td>
<td>Minor works letter</td>
<td>Letter from Department of Environment and Heritage Protection dated 3 April 2013</td>
</tr>
<tr>
<td>Electrical Safety Regulation 2002</td>
<td>Electrical Safety Regulation 2002 (superseded)</td>
<td>Queensland Regulation</td>
</tr>
<tr>
<td>ES000905R10x</td>
<td>Environmental Planning for Works</td>
<td>Ergon Energy series of documents</td>
</tr>
<tr>
<td>ETS 07-02-01</td>
<td>The Queensland Electricity Supply Industry Technical Specification for Hardwood Crossarms</td>
<td>Technical Specification</td>
</tr>
<tr>
<td>ME000301R123</td>
<td>EMF Layout Design Recommendations</td>
<td>Ergon Energy document</td>
</tr>
</tbody>
</table>

3. LEGISLATION, REGULATIONS, RULES, AND CODES

This document refers to the following:

<table>
<thead>
<tr>
<th>Legislation, regulations, rules, and codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Safety Act 2002</td>
</tr>
<tr>
<td>Electrical Safety Regulation 2002</td>
</tr>
<tr>
<td>Work Health and Safety Act 2011</td>
</tr>
<tr>
<td>Work Health and Safety Regulation 2011</td>
</tr>
<tr>
<td>Electricity Act 1994</td>
</tr>
<tr>
<td>Electricity Regulation 2006</td>
</tr>
<tr>
<td>ASCE No. 74 - Guidelines for Electrical Transmission Line Structural Loading - 3rd Ed.</td>
</tr>
</tbody>
</table>
4. DEFINITIONS, ABBREVIATIONS AND ACRONYMS

4.1 Definitions
Where definitions are required they have been included in the relevant sections of the document.

4.2 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kVA</td>
<td>Kilo Volt Amperes</td>
</tr>
<tr>
<td>kN</td>
<td>KiloNewtons</td>
</tr>
<tr>
<td>MPa</td>
<td>MegaPascal</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>V.P.I.</td>
<td>Vacuum / Pressure Impregnation (Treated Timber)</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius (Temperature)</td>
</tr>
</tbody>
</table>

4.3 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>All Aluminium Conductor</td>
</tr>
<tr>
<td>ABC</td>
<td>Aerial Bundled Conductor</td>
</tr>
<tr>
<td>ACSR</td>
<td>All Aluminium Conductor Steel Reinforcement</td>
</tr>
<tr>
<td>AAAC</td>
<td>All Aluminium Alloy Conductor</td>
</tr>
<tr>
<td>ACR</td>
<td>Automatic Circuit Recloser</td>
</tr>
<tr>
<td>CA</td>
<td>Capricornia (Central Queensland)</td>
</tr>
<tr>
<td>CCA</td>
<td>Copper Chrome Arsenate (Treated Timber)</td>
</tr>
<tr>
<td>CMEN</td>
<td>Common Multiple Earth Neutral</td>
</tr>
<tr>
<td>EDT</td>
<td>Every Day Tension</td>
</tr>
<tr>
<td>EMF</td>
<td>Electro-Magnetic Field</td>
</tr>
<tr>
<td>FN</td>
<td>Far North (Queensland)</td>
</tr>
<tr>
<td>HAT</td>
<td>Highest Astronomical Tide</td>
</tr>
<tr>
<td>HDC</td>
<td>Hard Drawn Copper</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
</tr>
<tr>
<td>LV</td>
<td>Low Voltage</td>
</tr>
<tr>
<td>MES</td>
<td>Mean Equivalent Span (also Ruling Span)</td>
</tr>
<tr>
<td>MHWS</td>
<td>Mean High Water Springs</td>
</tr>
<tr>
<td>MK</td>
<td>Mackay (Queensland)</td>
</tr>
<tr>
<td>MSQ</td>
<td>Maritime Safety Queensland</td>
</tr>
<tr>
<td>NQ</td>
<td>North Queensland</td>
</tr>
<tr>
<td>OH</td>
<td>Overhead</td>
</tr>
<tr>
<td>OHEW</td>
<td>Overhead Earth Wire</td>
</tr>
<tr>
<td>RL</td>
<td>Relative Level</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Squared</td>
</tr>
<tr>
<td>RPEQ</td>
<td>Registered Professional Engineer of Queensland</td>
</tr>
<tr>
<td>SC</td>
<td>Steel Conductor</td>
</tr>
<tr>
<td>SCM</td>
<td>Standard Construction Manual</td>
</tr>
<tr>
<td>SW</td>
<td>South West (Queensland)</td>
</tr>
<tr>
<td>SWER</td>
<td>Single Wire Earth Return</td>
</tr>
<tr>
<td>WB</td>
<td>Wide Bay (Queensland)</td>
</tr>
<tr>
<td>/AC</td>
<td>Aluminium Clad</td>
</tr>
<tr>
<td>/AZ</td>
<td>Alumoweld</td>
</tr>
<tr>
<td>/GZ</td>
<td>Galvanised</td>
</tr>
</tbody>
</table>

Note:
Some acronyms for Section 13 are defined in that section as they are only relevant to that section.
5. DESIGN SUMMARY

5.1 Limit State Design

Practice for the design of Overhead Line Structural Components is to use a Limit State design approach as set out in AS/NZS 7000 Overhead Line Design.

The Limit State design approach uses a reliability based (risk of failure) approach to match component strengths (modified by a factor to reflect strength variability) to the effect of loads calculated on the basis of an acceptably low probability of occurrence. This approach allows component strengths to be more readily matched and optimised by economic comparison.

The Limit State wind pressures of approximately 900Pa and 1200Pa correspond to the previously used working stress values of 500Pa and 660Pa respectively. These result in equivalent failure rates based on typical component strength factors and appropriate component reliability factors. Limit State wind load pressures are therefore greater than permissible stress loads by a factor of 1.8.

Conductor tension loads will increase in response to the higher design wind pressures by a factor depending on conductor everyday tension and conductor characteristics and are generally in the range 1.3 to 1.6.

Conductor weight loads will increase due to the effect of increased tension on structures with a height profile above the average of neighbouring structures, however in general this factor is fairly minimal in relatively flat terrain.

In general allowable structure duties under this approach are not significantly different to the working stress approach.

Design Component stresses are based on the ultimate stress at failure modified by a strength factor which takes into account the material strength variability.

Design component stresses are listed in the relevant sections.

5.1.1 The Ultimate Strength Limit State Condition

\[\phi R > \gamma W_n + 1.25 G_c + 1.1 G_s + \gamma_x F_t \]

Where:
- \(\gamma W_n \) = Effect of transverse wind loads
- \(G_c \) = Vertical dead loads resulting from conductors under limit state wind conditions
- \(G_s \) = Vertical dead loads resulting from non conductor loads
- \(F_t \) = Intact conductor tension loads under limit state wind conditions
- \(\phi R \) = Component design stress for limit state condition
- \(\gamma_x \) = Load factor applied to intact conductor loads taken as 1.25

5.1.2 The Maintenance Load Condition

\[\phi R > 1.1 G_s + 1.5 G_c + 2.0 Q + 1.5 F_t \]

Where:
- \(G_c \) = Vertical dead loads resulting from conductors under everyday condition
- \(G_s \) = Vertical dead loads resulting from non conductor loads
5.1.3 The Sustained Load Condition

\[\phi R > 1.25 G_c + 1.1 G_s + 1.1 F_{te} \]

Where:
- \(G_c \) = Effect of vertical dead loads resulting from conductors under everyday conductor tension loads
- \(G_s \) = Effect of vertical dead loads resulting from non conductor loads
- \(F_{te} \) = Effect of intact conductor tension loads under every day (15°C no wind) conditions
- \(\phi R \) = Component design stress for long duration loads

5.2 Design Wind Pressures

An assessment of design wind pressures is necessary to determine the wind loadings to be applied to distribution line components as follows:

- Wind load on the pole element
- Transverse wind load on conductors
- Increase in conductor tension due to the transverse load applied by the wind action
- Wind load on insulators, crossarms and other fittings

Wind pressures have been rationalised to two sets of figures to cater for areas of Queensland subject to the influence of tropical cyclones and other areas as follows:

- Areas subject to the influence of Tropical cyclones, defined as Region C are within 50km of the coast in locations above latitude 25° i.e. from Bundaberg north.
- Areas not likely to be subjected to tropical cyclones consist of the remainder of the state, defined as Regions A and B or Region AB.

Design wind pressures for the determination of conductor transverse wind loads and longitudinal tension loads are as follows:

- Region C – exposed to tropical cyclones 1200Pa @ 25°C
- Remainder of State (Regions A and B) 900Pa @ 25°C

Design wind pressures for the determination of wind on poles, elements, insulators and hardware are as follows:

- Region C – exposed to tropical cyclones 1700Pa @ 25°C
- Remainder of State (Regions A and B) 1300Pa @ 25°C

These wind pressures correspond to wind speeds of 184km/h and 160km/h respectively. These wind pressures provide for a return period of better than 50 years in accordance with the provisions of AS/NZS 7000 and approximately relate to the superseded working wind figures by a factor of 1.8.
5.2.1 Special Situations

In situations of above average exposure, e.g. elevated and exposed coastal locations in a cyclone prone area, higher figures would be appropriate. Such a situation may be a structure located on an exposed coastal escarpment or hill and a design pressure increase of the order of 20% may be appropriate.

Conversely, for lines of a temporary nature in a protected environment, reduced figures may be appropriate.

Consideration should also be given to the importance of the load supplied.

5.2.2 Maintenance Wind Pressures

For determination of maintenance loadings, a nominal wind pressure of 100Pa @ 15°C is proposed. This corresponds to a wind speed of 44km/h.

5.2.3 Wind Pressures for Clearances

Wind pressures for calculation of clearances to structures etc. should be based on a design pressure of 500Pa @ 35°C in accordance with the recommendations of AS/NZS 7000. This corresponds to a wind speed of 100km/h.
6. CONDUCTOR DESIGN

6.1 Standard Conductor Applications

6.1.1 Conductor Selection

Economically, conductors represent between 20 to 40% of the total cost of a line. Consequently their selection is of prime importance. In earlier days of electrical power transmission, copper was mainly used as the material of overhead line conductors, however with the expansion of electricity networks, several factors, such as price, weight, availability and conductivity have virtually compelled Designers to concentrate on aluminium based conductors as listed below.

- **AAC** = All Aluminium Conductor
- **ACSR** = All Aluminium Conductor Steel Reinforcement
- **AAAC** = All Aluminium Alloy Conductor

Steel conductors are still widely used as overhead earth wires and also as phase conductors on rural distribution lines as listed below.

- **SC/GZ** = Galvanised Steel Conductor
- **SC/AC** = Aluminium Clad Steel Conductor

Phase conductors fulfil an electromechanical function; hence both the electrical and mechanical aspects are to be considered.

The most important parameter affecting the choice of conductor is its resistance, because it influences voltage regulation, power loss and current rating.

For AC lines, the diameter of a conductor affects the inductance and the capacities. Up to a voltage of 132kV, the above considerations are generally adequate, however at higher voltages, the above gradient on the conductor surface may require the selection of a conductor on the basis of its diameter, thus leading to the use of bundled conductor (i.e. 2, 3 or 4 phase).

As already indicated aluminium based conductors represent the highest proportion of conductor usage. The advantageous mechanical properties of aluminium alloys have also been recognised for a long time, but AAAC has always been more expensive than ACSR, for equivalent conductivities. However there are cases where initial cost is not the governing factor. One of these is the corrosion performance, since being monometallic, the risk of bimetallic corrosion between the aluminium and the zinc on the steel core are non-existent. Consequently AAAC conductors are used on lines in coastal areas.

6.1.2 Conductor Degradation

Table 6-1 provides an indication of the relative corrosion performance of various conductor types.

The recommendations should be modified by local experience, for example, for salt spray pollution the relative distances from the source depend upon the prevailing winds and the terrain. Special circumstances such as crop dusting, which has been known to have severe effects, should also be taken into account.
Table 6-1 – Indication of relative corrosion performance of conductors

<table>
<thead>
<tr>
<th>CONDUCTOR TYPE</th>
<th>SALT SPRAY POLLUTION</th>
<th>INDUSTRIAL POLLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPEN OCEAN</td>
<td>BAYS INLETS SALT LAKES</td>
</tr>
<tr>
<td>AAC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AAC/6201</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AAAC/1120</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ACSR/GZ</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ACSR/AZ</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ACSR/AC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SC/GZ</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SC/AC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HDC</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note:
1 = Good performance
2 = Average performance
3 = Poor performance

6.1.3 Conductor Tensions

Stringing tensions for use as a standard for distribution use is listed in the Section 6.3. Applications for the bare conductors will generally be for HV with LV ABC used for LV applications; however the bare conductor tensions are also suitable for use on LV as a non-preferred construction.

The applications described are defined briefly as follows:

- **Urban Slack** – Span lengths up to around 40m in locations where staying is difficult or not practical.
- **Urban Standard** – Span lengths typically in the range 40 – 60m in a typical urban environment.
- **Semi Urban** – Span lengths typically up to 80 or 100m in rural ranchett type subdivisions.
- **Rural** – Span lengths generally greater than 150m (with the exception of LV ABC). AAC conductors would generally be used for spans up to around 150m with higher strength conductors for longer spans as appropriate.

These tensions are a rationalisation of tensions already generally in use and are considered to be a reasonable compromise between layout economies and construction and maintenance practicalities. Use of reduced tensions in situations such as short slack off spans to avoid staying is permissible at the discretion of the designer, however tensions in 3/2.75 SCGZ or SCAC and 3/4 and 4/3 ACSR conductors should not be reduced below 10% in consideration of the performance of preformed fittings and the tendency of these conductors to retain a spiral set at low tension.

6.1.4 Conductor Layout Temperature

Proposed conductor temperatures for layout purposes (unless specified otherwise by planning) for bare conductors are 60°C for rural applications and 75°C for urban applications. The layout temperature for LV ABC conductors is 80°C.
6.1.5 Conductor Mid-Span Clearances

Limitations on allowable spans of the same circuit to mitigate mid-span conductor clashing are as per the provisions of AS/NZS 7000 Section 3. A program for calculation allowable spans is detailed in Appendix A – Overhead Design Programs.

6.1.6 Conductor Vibration Protection

Vibration dampers are used to damp aeolian vibration which occurs when laminar wind flows across a conductor causing vortices to be shed alternatively from top to bottom of the conductor. The resultant vibration can cause severe damage to conductors and fittings. Laminar flow winds are most prevalent in early morning in winter in exposed locations. The presence of trees, buildings or other obstructions will generally break up the laminar flow.

Vibration dampers are therefore only required at rural tensions for locations which are exposed or likely to become exposed due to future timber clearing. In general, vibration dampers should be fitted in open rural or exposed coastal areas with consideration being to the possibility of future clearing in the vicinity of the line. Fit 1 damper per conductor span, except in known bad vibration areas fit 2 dampers per conductor per span.

6.2 Conductor Sag and Tension

6.2.1 Parabola vs Catenary Assumptions

Conductor tension calculations for distribution are generally carried out using parabolic assumptions. A parabola is the shape that is formed by a cable supporting an evenly distributed horizontal weight where as a catenary is the shape that is formed by a hanging cable whose weight is a constant per unit of arc length. The word *catenary* comes from the Latin word *catena*, meaning chain.

Provided that the sag is less than 9% of the span length, there is less than 1% difference in their shapes. So for most practical distribution applications the parabola will suffice. The mathematical formulae which are derived for the parabola are much simpler than the catenary formulae.

6.2.2 Sag

The following formula for the sag in a parabola can be used for level and non-level spans. A level span is a span where the conductor supports are at the same elevation.

\[
S = \frac{wL^2}{8T}
\]

Where:

- \(S \) = mid-span sag (m)
- \(w \) = conductor weight (N/m)
- \(L \) = horizontal span length (m)
- \(T \) = conductor tension (N)

The conductor tension \(T \) is the tension at the low point of the cable however the tension does increase with conductor elevation. The tension at the supports will be no greater than an additional 7% of the tension at the low point for a level span where the sag is less than 9% of the span length.

Normally the conductor weight is given in kg/km which must be converted into N/m to use in the above equation.
6.2.3 Slack

The difference in distance between the straight line between the supports and the distance along the parabola arc (the stretched conductor length) is called the slack. For a level span the slack is given by:

\[K = \frac{8S^2}{3L} \]

Where:
- \(K \) = slack (m)
- \(S \) = mid-span sag (m)
- \(L \) = span length (m)

6.2.4 Factors that Affect Conductor Tension

Temperature

As the temperature increases, the unstretched conductor length will increase by an amount equal to:

\[\Delta L = \alpha TS \]

Where:
- \(\alpha \) = the coefficient of thermal expansion
- \(T \) = the temperature increase in degrees Celsius
- \(S \) = the span length in metres

This will result in a decrease in conductor tension and an increase in sag.

Wind

A wind load on the conductor will increase the apparent weight of the conductor resulting in an increase in tension.

The increase in tension will increase the cable length due to elastic stretch by an amount given by:

\[\Delta L = \left(T_o - T \right) / EA \]

Where:
- \(T_o \) = the initial tension in newtons
- \(T \) = the final tension
- \(E \) = the coefficient of elasticity
- \(A \) = the cross section of the conductor in metres.

This increase in resultant load will result in an effective sag in an inclined direction with both horizontal and vertical components.
Ice
Ice build-up on the conductor will increase the apparent diameter and weight of the conductor. This is not an issue in Queensland however the same approach can be used for calculating loads and sags if bird darverters are installed along a span.

Age
Conductor sag over time may increase due to the effects of strand settling in and metallurgical creep. A higher tension may be used when the conductor is first erected to allow for “settling in of conductor strands and for subsequent metallurgical creep of the conductor material.

Pole movement
Any movement of pole tops due to stay relaxation, etcetera will have the effect of introducing additional length into the span.

6.2.5 Ruling Span
The ruling span (or equivalent span) is defined as that span which behaves identically to the tension in every span of a series of suspension spans under the same loading condition. In general the flexibility of a wood pole is sufficient to ensure that an intermediate pin structure can be considered as a suspension for the purposes of calculation of the ruling span provided that the ratio of adjacent span lengths is not too extreme (e.g. less than 1:2).

The ruling span can be calculated using:

\[
L_r = \frac{\sum_{i=1}^{n} L_i^3}{\sum_{i=1}^{n} L_i}
\]

Where:

- \(L_r\) = ruling span
- \(L_i\) = horizontal span length of span \(i\)
- \(n\) = number of spans between strain structures

This equation applies for lines in flat to undulating terrain. In very mountainous terrain with large differences in elevation between structures, use of Equation (S4) in Appendix S of AS/NZS 7000 Overhead Line Design – Detailed Procedures may be required.

6.2.6 Weight Span
The weight span at a structure is the length of span between the catenary low points on either side of the particular structure and determines the vertical load due to the weight of conductor at that structure.

6.2.7 Wind Span
The wind span at a particular structure is the length of span that determines the transverse load on the structure due to wind action on the conductor and is defined as:

\[L_w = \text{one half the sum of the adjacent spans.}\]

6.2.8 Conductor Tension Limitations
Conductor tension limitations are determined by the most onerous of the following conditions.
Serviceability Condition or everyday condition (relates to vibration, construction and anchoring practicalities) – as specified in the table of section 3.2 Standard Conductor Applications at a temperature of 15°C.

Conductor Strength Limit State - Bare conductors – 72% of Conductor nominal breaking load at a temperature of 25°C.

Serviceability Condition – low temperature condition – 50% of conductor nominal breaking load. This relates to structural loadings at a temperature of 0°C. (This condition will generally never govern for the range of conditions proposed.)

Conductor Strength Limit State LV ABC conductors – 40% of Conductor nominal breaking load at a temperature of 25°C (Relates to insulation adhesion considerations).

In some cases more than one condition may govern for different span lengths. The span at which the change occurs is called the transition span.

Conductor stringing charts from which conductor tensions can be determined for differing temperature and wind loading conditions are located in Appendix B – Stringing Charts section of this standard.
6.3 Standard Conductors

A set of standard conductors for distribution is contained in Tables 2 - 5. Conductors specified for new constructions should generally be chosen from the conductors in bold text. All other conductors are only intended for maintenance and special applications.

Table 6-2 – Standard Applications for AAC Conductors

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>Application</th>
<th>Urban Slack - spans up to 40m %CBL</th>
<th>Urban Standard - spans typically 40 - 60m %CBL</th>
<th>Semi Urban - spans typically 80 - 100m %CBL</th>
<th>Rural - spans around 150m %CBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra</td>
<td>7/3.00 AAC</td>
<td>Urban and close rural laterals</td>
<td>2.5%</td>
<td>6%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Mars*</td>
<td>7/3.75 AAC</td>
<td>Maintenance, reconductoring and special applications</td>
<td>2.5%</td>
<td>6%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Moon*</td>
<td>7/4.75 AAC</td>
<td>Maintenance and special applications for urban and close rural backbone</td>
<td>2.5%</td>
<td>6%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Pluto</td>
<td>19/3.75 AAC</td>
<td>Urban and close rural heavy backbone, and heavy LV open wire applications</td>
<td>2.5%</td>
<td>6%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>LV ABC</td>
<td>4 x 95 sq mm</td>
<td>Standard LV reticulation cable</td>
<td>2.5%</td>
<td>6%</td>
<td>10%</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Notes:
- Conductors in **bold** are standard conductors.
- *These conductors should only be used for maintenance and special applications.
Table 6-3 – Standard Applications for AAAC, ACSR, SC/GZ and SC/AC Conductors (Rural Only)

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>Application</th>
<th>% CBL</th>
<th>Typical Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine*</td>
<td>7/2.5 AAAC</td>
<td>Maintenance, reconductoring and special applications</td>
<td>20%</td>
<td>250m</td>
</tr>
<tr>
<td>Fluorine</td>
<td>7/3.00 AAAC</td>
<td>Rural lateral in coastal environment</td>
<td>20%</td>
<td>250m</td>
</tr>
<tr>
<td>Helium*</td>
<td>7/3.75 AAAC</td>
<td>Maintenance, reconductoring and special applications</td>
<td>20%</td>
<td>250m</td>
</tr>
<tr>
<td>Iodine</td>
<td>7/4.75 AAAC</td>
<td>Rural backbone</td>
<td>20%</td>
<td>250m</td>
</tr>
<tr>
<td>Apple</td>
<td>6/1/3.0 ACSR</td>
<td>Rural lateral in cyclonic or open rural area</td>
<td>22%</td>
<td>250m</td>
</tr>
<tr>
<td>Banana*</td>
<td>6/1/3.75 ACSR</td>
<td>Maintenance, 7/104 Cu replacement and special applications</td>
<td>22%</td>
<td>250m</td>
</tr>
<tr>
<td>Raisin*</td>
<td>3/4/2.5 ACSR</td>
<td>SWER backbone for reconductoring</td>
<td>22%</td>
<td>320m</td>
</tr>
<tr>
<td>Sultana</td>
<td>4/3/3.0 ACSR</td>
<td>SWER backbone</td>
<td>22%</td>
<td>320m</td>
</tr>
<tr>
<td>3/2.75*</td>
<td>SC/GZ</td>
<td>Maintenance and SWER and light rural where work practices are not available for AC</td>
<td>25%</td>
<td>350m</td>
</tr>
<tr>
<td>3/2.75</td>
<td>SC/AC</td>
<td>SWER and open rural 1 & 3 phase lateral</td>
<td>25%</td>
<td>350m</td>
</tr>
</tbody>
</table>

Notes:
- Conductors in **bold** are standard conductors.
- *These conductors should only be used for maintenance and special applications.
Table 6-4 – Standard Conductors Electrical and Mechanical Properties

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>Area of Section (mm²)</th>
<th>Overall Diameter (mm)</th>
<th>Calculated Breaking Load (kN)</th>
<th>Unit Mass (kg/km)</th>
<th>Final Modulus of Elasticity (GPa)</th>
<th>Co-efficient of Linear Expansion (x10^-6/°C)</th>
<th>DC Resistance at 20°C (ohms/km)</th>
<th>AC Resistance at 80°C (ohms/km)</th>
<th>Temperature Co-efficient of Resistance at 20°C (°C)</th>
<th>Magnetic Effect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC/1350</td>
<td>49.48</td>
<td>9</td>
<td>7.91</td>
<td>135</td>
<td>59</td>
<td>23</td>
<td>0.579</td>
<td>0.708</td>
<td>0.00403</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mars AAAC/1350</td>
<td>77.31</td>
<td>11.3</td>
<td>11.9</td>
<td>212</td>
<td>59</td>
<td>23</td>
<td>0.37</td>
<td>0.452</td>
<td>0.00403</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Moon AAAC/1350</td>
<td>124</td>
<td>14.3</td>
<td>18.8</td>
<td>340</td>
<td>59</td>
<td>23</td>
<td>0.232</td>
<td>0.284</td>
<td>0.00403</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC/1350</td>
<td>209.8</td>
<td>18.8</td>
<td>32.3</td>
<td>578</td>
<td>56</td>
<td>23</td>
<td>0.137</td>
<td>0.168</td>
<td>0.00403</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorine AAAC/1120</td>
<td>34.36</td>
<td>7.5</td>
<td>8.18</td>
<td>94</td>
<td>59</td>
<td>23</td>
<td>0.864</td>
<td>1.049</td>
<td>0.0039</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluorine AAAC/1120</td>
<td>49.5</td>
<td>9</td>
<td>11.8</td>
<td>135</td>
<td>59</td>
<td>23</td>
<td>0.601</td>
<td>0.73</td>
<td>0.0039</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Helium AAAC/1120</td>
<td>77.31</td>
<td>11.3</td>
<td>17.6</td>
<td>211</td>
<td>59</td>
<td>23</td>
<td>0.383</td>
<td>0.465</td>
<td>0.0039</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iodine AAAC/1120</td>
<td>124</td>
<td>14.3</td>
<td>27.1</td>
<td>339</td>
<td>59</td>
<td>23</td>
<td>0.239</td>
<td>0.29</td>
<td>0.0039</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Apple 6/1.0 ACSR/GZ</td>
<td>49.48</td>
<td>9</td>
<td>14.9</td>
<td>171</td>
<td>79</td>
<td>19.3</td>
<td>0.677</td>
<td>0.893</td>
<td>0.0042</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Banana ACSR/GZ</td>
<td>77.31</td>
<td>11.3</td>
<td>22.8</td>
<td>268</td>
<td>79</td>
<td>19.3</td>
<td>0.433</td>
<td>0.587</td>
<td>0.0042</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Raisin ACSR/GZ</td>
<td>34.36</td>
<td>7.5</td>
<td>24.4</td>
<td>193</td>
<td>136</td>
<td>13.9</td>
<td>1.58</td>
<td>2.047</td>
<td>0.0042</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Sultan 4/3.0 ACSR/GZ</td>
<td>49.48</td>
<td>9</td>
<td>28.3</td>
<td>242</td>
<td>119</td>
<td>15.2</td>
<td>0.893</td>
<td>1.172</td>
<td>0.0042</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>17.82</td>
<td>5.93</td>
<td>22.2</td>
<td>139</td>
<td>192</td>
<td>11.5</td>
<td>9.7</td>
<td>12.05</td>
<td>0.0044</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>17.82</td>
<td>5.93</td>
<td>22.7</td>
<td>118</td>
<td>162</td>
<td>12.9</td>
<td>4.8</td>
<td>5.75</td>
<td>0.0036</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Conductors in **bold** are standard conductors.
- *These conductors should only be used for maintenance and special applications.
Table 6-5 – Superseded Conductors Electrical and Mechanical Properties

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>Area of Section (mm²)</th>
<th>Overall Diameter (mm)</th>
<th>Calculated Breaking Load (kN)</th>
<th>Unit Mass (kg/km)</th>
<th>Final Modulus of Elasticity (GPa)</th>
<th>Co-efficient of Linear Expansion (x10^-6/°C)</th>
<th>DC Resistance (at 20°C) (ohms/km)</th>
<th>AC Resistance (at 75°C) (ohms/km)</th>
<th>Temperature Co-efficient of Resistance at 20°C (°C)</th>
<th>Magnetic Effect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDC Impl 7/0.064</td>
<td>Cherry ACSR/GZ</td>
<td>14.57</td>
<td>4.87</td>
<td>5.97</td>
<td>130.55</td>
<td>118</td>
<td>17</td>
<td>1.242</td>
<td>1.502</td>
<td>0.00381</td>
<td>1</td>
</tr>
<tr>
<td>HDC Impl 7/0.080</td>
<td>Cherry 6/4.75</td>
<td>22.7</td>
<td>6.1</td>
<td>9.45</td>
<td>203.4</td>
<td>118</td>
<td>17</td>
<td>0.797</td>
<td>0.964</td>
<td>0.00381</td>
<td>1</td>
</tr>
<tr>
<td>HDC Impl 7/0.104</td>
<td>Cherry 7/1.6</td>
<td>38.36</td>
<td>7.92</td>
<td>15.76</td>
<td>343.9</td>
<td>118</td>
<td>17</td>
<td>0.472</td>
<td>0.571</td>
<td>0.00381</td>
<td>1</td>
</tr>
<tr>
<td>Cherry 6/4.75</td>
<td>Cherry 7/1.6</td>
<td>120.4</td>
<td>14.3</td>
<td>33.2</td>
<td>404</td>
<td>76</td>
<td>19.9</td>
<td>0.271</td>
<td>0.372</td>
<td>0.0042</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Table 6-6 – Stringing Table for Services

<table>
<thead>
<tr>
<th>SPAN LENGTH (m)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x25mm²</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td>1.9</td>
<td>2.5</td>
<td>3.1</td>
<td>3.9</td>
</tr>
<tr>
<td>3x25mm²</td>
<td>0.2</td>
<td>0.4</td>
<td>0.70</td>
<td>1.1</td>
<td>1.5</td>
<td>2.1</td>
<td>2.7</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>4x25mm²</td>
<td>0.2</td>
<td>0.50</td>
<td>0.8</td>
<td>1.2</td>
<td>1.7</td>
<td>2.3</td>
<td>3.0</td>
<td>3.8</td>
<td>4.7</td>
</tr>
<tr>
<td>2x50mm²</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>4x50mm²</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>2x95mm²</td>
<td>0.2</td>
<td>0.20</td>
<td>0.30</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.2</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>4x95mm²</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
<td>2.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Notes:
1. Sag must be equal to or greater than that specified in the stringing table above.
2. Minimum vertical clearances to ground must be 300mm greater than the clearances listed in Table 12-2 – Minimum Clearances – Low Voltage Service (From Ground and Structures) in the section “Layout Clearances”. The additional 300mm is to allow for extra sag due to heating of the cable.
3. These sags have been determined such that limit state loading restrictions on customers attachments do not result in the specific working loads of 1kN for 25mm² and 3.5kN for 50 mm² and 95mm² cables being exceeded under 1200Pa wind loading. Sags have been rounded up for practical applications.
7. POLES

7.1 Hardwood Pole Tip Loads

Pole strengths are currently specified in terms of the allowable working loads applied at the pole tip.

This nomenclature has wide acceptance and familiarity and it is proposed that these designations remain. The equivalent limit state design stresses calculated in accordance with AS1720.1 1997 equate closely to 1.8 times these figures and the proposed limit state loadings for the current range of pole sizes is listed in tables following in this section.

The limit state stresses are equivalent to a strength factor of 0.72 which also equates to the strength factor derived from AS1720.1. Practice is to limit sustained loads on poles to 50% of the working loads as listed in the table. The resultant stresses are conservative in terms of the provisions of AS1720.1 by a factor of around 60% and make allowance for considerations of ground line deterioration and aesthetic considerations relating to pole deflection.

The equivalent pole timber design stresses which are to be used for calculation of allowable bending moments at intermediate locations on poles (e.g. stay attachment points) are as follows:

Strength Group S1: Limit State Condition 75 MPa
 Sustained Load Condition 20 MPa
Strength Group S2: Limit State Condition 60 MPa
 Sustained Load Condition 17 MPa
Strength Group S3: Limit State Condition 48 MPa
 Sustained Load Condition 14 MPa

In general, Strength Group S2 poles are the most common and basing of designs on S2 stresses and diameters will be sufficiently accurate in the event that the actual pole installed is S1 or S3.

New hardwood pole strength is identifiable on the pole disc however some strength degradation occurs over time. Ergon Energy has an asset inspection program for hardwood poles. This program includes assessments that determine the extent of pole degradation and decides whether the pole remains serviceable, requires replacement or is reinforced. Part of the output of the inspection program is the calculated pole working strength (Ellipse Rating), and is based upon Working Stress Calculations. This value is recorded against the pole and used for future designs and augmentation of the line.

The calculated pole working strength needs to be converted to Limit State and the following conversions apply.

For new pole, the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State, and 0.2 for sustained loads:

- Ultimate = Nominal (i.e. Pole Disc Rating) * 2.5
- Allowable pole strength, Limit State = Ultimate * 0.72
- Allowable pole strength, Sustained = Ultimate * 0.2

For existing pole with no change in tip load, the allowable pole strengths, for no change in the tip load, are based on the ultimate pole strength factored by 0.9 for Limit State, and 0.25 for sustained loads:

- Ultimate = Ellipse Rating * 2
Allowable pole strength, Limit State = Ultimate * 0.9
Allowable pole strength, Sustained = Ultimate * 0.25

For existing pole with a change in tip load, the allowable pole strengths, for a change in the tip load, are based on the ultimate pole strength factored by 0.72 for Limit State, and 0.2 for sustained loads.

- Ultimate = The Lesser Rating (between Pole Disc Rating and Ellipse Rating) * 2
- Allowable pole strength, Limit State = Ultimate * 0.72
- Allowable pole strength, Sustained = Ultimate * 0.2

The information above also applies to nailed or reinstated hardwood poles and steel butted hardwood poles.

7.1.1 Foundation Loads

Consideration of foundation strength is critical if the full design capacity of the pole is to be achieved.

The recommended minimum pole setting depth (standard depth) in good soil is specified at 0.1 of pole height plus 0.6m. However for application of Ergon Energy overhead constructions, a setting depth of 0.1 of pole height plus 0.75m is recommended as a minimum for general use.

Appendix C – Pole Characteristics and Net Allowable Pole Tip Loads list net allowable pole tip loads after allowance for wind on the pole. The shaded figures indicate that the allowable pole tip load is limited by the pole strength.

If the design relies on use of the full pole strength capability, in particular for the higher strength rated poles, and/or the foundation material is suspect then special attention must be given to the foundation design. This can be achieved by provision of additional depth and or use of stabilised backfill. In very poor soil situations, a tailored foundation design may be required. In expansive or "black soil" country, an additional 0.15 m depth is recommended.

The foundation loads listed in the tables are based on the approach used in C(b)1-1991 and formulae are listed in the program write up for the program “Allowable Pole Tip Loads” Appendix A – Overhead Design Programs.

7.1.2 Foundations in rock

Where rock is encountered in the pole foundation, the embedment depth may be able to be reduced depending on the soundness of the rock, depth that rock is encountered and the properties of the soil above the rock.

In general, the use of concrete or stabilised backfill will be necessary in order to achieve that required bearing strength to allow the design pole tip load to be achieved at a reduced embedment.

In order to facilitate pole ground line inspections, a minimum depth of 300 mm of natural backfill should be provided above the concrete.

Advice should be sought from designers when a reduction from the specified embedment depth to minimise excavation in rock is proposed.
7.1.3 Poles used for Transformer Structures

In general the additional bending, column and wind load moments applied to a pole that result from the installation of a transformer or other pole mounted plant will be minor compared with conductor tension loads, however in view of the increased importance of these structures, an increase in specified pole strength is recommended.

The following pole sizes are recommended:

- SWER transformers: 8 kN
- Rural transformers on the three phase system and other plant, e.g. isolators ACR’s etc.: 12 kN
- Urban transformers 315 KVA and above: 12 kN

7.1.4 Difficulties in Sourcing 12.5 and 14m 12kN Hardwood Poles

From time to time there are difficulties experienced in sourcing 12.5 and 14m 12kN hardwood poles. This section provides recommendations on the appropriate use for 12kN strength rated poles in order to minimise the demand for these poles.

There is some scope for designers to specify an 8kN pole in situations where:

- There is little likelihood of the transformer being upgraded
- There are no significant resultant loads resulting from unbalanced conductor loads
- The stay location is close to the load application point.

Use of 12kN poles would be appropriate for poles supporting high value and weight plant such as regulators or 500kVA transformers; however for other pole mounted plant constructions, specification of an 8kN pole will generally be more than adequate.

In addition to these applications, there could be some situations where the necessity to avoid stays in urban situations requires the use of a 12kN pole for strain and angle poles. In some cases, it may be possible to modify the design parameters with regard to stringing tension and pole locations in order to avoid the need for 12kN strength rated poles.

In areas where there is an established CMEN system, it is recommended that concrete poles be used for transformer structures as a substitute for 12kN strength rated hardwood poles.

7.2 Economics of Pole Costs

Hardwood poles are significantly cheaper than other currently available alternatives for distribution applications. Except for applications involving high value plant or locations with aggressive termite activity, the whole of life costing will generally favour use of hardwood poles. This Standard considers applications where alternative pole types can offer best value as a substitute for hardwood poles and makes recommendations for their application. The benefits of deploying alternative pole types are:

- Use of alternatives will reduce requirements for hardwood poles and allow use of hardwood in situations where they are more cost effective. This typically may be for the replacement of in-service poles on a like for like basis.
- Development of alternative pole constructions will allow design and construction staff to become familiar with these alternatives and develop supply chain arrangements. This will facilitate a ramp up of the use of alternatives to hardwood should supply of hardwood become unexpectedly acute.
7.3 Step and Touch Potential Issues

The use of conducting poles such as concrete or steel poles in urban locations introduces step and touch potential issues under fault conditions. This can be addressed by adoption of a Common Multiple Earthed Neutral (CMEN) earthing system. Much of Ergon Energy’s urban system is classed as separately earthed. In practice however, neutrals would already be routinely interconnected so conversion to a CMEN system could be readily achieved. Until systems are formally converted to CMEN, the use of conducting poles in urban locations in non-CMEN areas is constrained.

7.4 Alternative Pole Types

Alternative poles to hardwood are listed as follows and progress to date on developments as an alternative discussed.

7.4.1 Concrete Poles

Concrete poles have been used for some time within Ergon Energy for the construction of high voltage networks and other structures that require a high level of reliability. Due to the higher initial cost and considerations of step and touch potential, concrete poles have not been widely used for urban applications. The pole elements are required to have attachment holes and ferrules specified at the design stage and this tends to inhibit their use for small extensions and replacements.

There is however scope for distribution use of concrete poles for transformer structures and feeder backbone applications where the reduced maintenance and increased reliability can be justified on a whole of life basis. The economics of their use generally favour applications where longer pole lengths and higher strengths are required. These would typically be larger conductor feeder backbone or sub-transmission lines where Overhead Earth Wires (OHEW’s) are required.

Standard constructions have been developed for rural 11kV, 22kV and 33kV applications which use the standard range of distribution conductors. These are included in the Concrete Pole section of the Overhead (OH) Construction Manual.

Standard constructions have also been developed for urban transformer installations and these are included in the concrete transformer pole section of the OH Construction Manual.

7.4.2 Steel Poles

Standard constructions for rural applications using Bluescope steel pole elements have been developed and included in the OH Construction Manual. Design software is also available to facilitate the use of these designs. These constructions provide for pole sizes in 12m and 14m which are suitable for typical rural lines without OHEW for the range of standard distribution conductors.

In this size range, they are a cheaper alternative to concrete and their lightweight reduces transport costs in rural situations. They are also able to be drilled on site to facilitate tee-offs etc.

7.4.3 Pine Poles

Queensland Forest Service installed an in-service trial of 175 treated slash pine power poles. The aim of this trial was to provide evidence to support the use of CCA treated slash pine as an alternative to the increasingly difficult to source Class 1 and 2 hardwoods.

In May 2001, after fifteen years of service, 130 of the original 175 treated slash pine power poles were assessed for a wide range of defects and the results compared with those obtained from a sample of Australian hardwood poles installed in a similar location and conditions. The results showed that the slash pine poles performed equally well in most aspects and significantly better in relation to soft rot, the main cause of early power pole failure. Vertical splitting is the only apparent factor where the slash pine poles performed worse than the hardwood. However, although the overall physical deterioration of the pine poles is marginally worse than the hardwood poles after
15 years of service, it does not seem to have led to premature failures. In summary, this trial indicates that in terms of durability, treated softwood poles should provide a satisfactory alternative to hardwood.

Small numbers of slash pin poles were purchased around 2006 and issues arose regarding the surface finish resulting from the debarking operation and brittle fracturing related to advanced decay prior to the treatment process. Any purchasing arrangements should address these quality issues.

Slash pine poles are available in the same strength/classes as hardwood poles. However, they require an increased diameter to achieve the same strength. There appears to be no reason that they cannot be used interchangeably with the traditional hardwood poles to satisfy future demands. They are predominately available in the 11m size and it is likely that they may not be readily available in the larger sizes of 14m and above until these sizes from the plantation sources have time to mature.

Subject to establishment of suitable supply arrangements, pine poles can be substituted for hardwood poles. A construction code is not yet available in the Overhead Construction Manual.

7.4.4 Steel Butted Hardwood Poles

Steel butted poles are a means of extending the length of hardwood poles, thus allowing small lengths of timber to be used for standard pole lengths. The additional manufacturing process increases the cost to place the poles in a similar cost category to steel or concrete pole alternatives. They are particularly suitable for use in termite prone locations. They could however be used as a direct substitute in Ergon Energy standard constructions for standard hardwood poles subject to suitable supply arrangements being put in place in the event of developing shortages of standard hardwood poles. A construction code to cover the use of steel butted poles is included in the Overhead Construction Manual.

7.4.5 Jointed Hardwood Poles

Jointed hardwood poles are proposed by suppliers as an alternative to standard poles as a means of utilising timber sections which do not have the required straightness or length to be suitable as a standard pole. The manufacturing process introduces a significant cost penalty which places them in a similar cost category to concrete and steel poles. They could however be used as a direct substitute in Ergon Energy standard constructions for standard hardwood poles subject to suitable supply arrangements being put into place in the event of developing shortages of standard hardwood poles. A construction code is not yet available in the Overhead Construction Manual.

7.4.6 Composite Fibre Poles

The use of manufactured composite fibre poles is an additional option that may prove viable in the future. These technologies are using reinforced epoxy or polyester materials, laminated construction poles are available or under development. Limited trial installations have been carried out on Ergon Energy’s network. However, in general these products are not yet at the stage where they are close to being cost competitive with hardwood poles or other alternatives, however there may be application in certain situations, for example termite prone locations. These developments will be monitored on an ongoing basis and trial installations installed as considered appropriate.

7.4.7 Options Currently Available

Sets of construction drawings using alternative pole types for distribution applications have been developed and included in the Overhead Construction Manual as follows:

- Rural Intermediate and Strain Concrete Pole Constructions – these are detailed in the Concrete Pole folder of the Overhead Construction Manual.
- Rural Intermediate and Strain Steel Pole Constructions – these are detailed in the Steel Pole folder of the Overhead Construction Manual.
- Urban Concrete Transformer Pole Constructions – these are detailed in the Concrete Transformer Pole folder of the Overhead Construction Manual.
• Codes for steel butted poles are available in the Overhead Construction Manual which allows a direct substitution for a standard hardwood pole.

In addition to these applications, steel and concrete poles have been developed as Special Constructions for such applications as:

• Steel poles used in urban locations in Mt Isa as an alternative to wood in order to avoid termite damage. This location is a designated CMEN area.
• Concrete used for Sub-Transmission applications requiring larger conductors and a requirement for Overhead Earth Wire.

Compatible units for Pine and Jointed Poles are not currently in the Overhead Construction Manual.

7.5 Criteria for Use

Alternative poles to standard hardwood poles are to be specified based on the criteria below. In general, cost benefit analysis may not favour the use of the alternative. This will depend upon reliability weighting and discount rates etc. but the use of alternatives will relieve supply pressures on hardwood poles and assist in developing familiarity by field staff and designers in the use of these alternative products which will facilitate their wide use in the event of critical shortages of hardwood poles.

7.5.1 Concrete Poles

Use for transformer poles in CMEN areas.

Use for larger conductor feeder backbone and sub-transmission applications where the increased height/strength range allows a more cost effective design. Standard constructions are available in the Overhead Construction Manual for the standard conductor range. If designs outside of this range are required, it may be possible to adapt designs from previous similar projects.

7.5.2 Steel Poles

Use in rural locations on projects that require delivery of significant number of poles to site. These light weight poles will reduce the transport cost of poles to site. These would generally be feeder backbone extensions or extensions of significant length.

Priority is to be given to termite prone areas or on feeders where pole failures are a significant contributor to unplanned outages.

Wood or fibre composite crossarms can be utilised on steel poles.

7.5.3 Pine Poles

Subject to suitable purchasing arrangements being put in place, slash pine poles can be used as a direct replacement for hardwood. Construction codes will be added to the Overhead Construction Manual to facilitate their use.

7.5.4 Steel Butted Hardwood Poles

Steel butted poles are currently in stock and codes are available in the Overhead Construction Manual in order to facilitate their use as an alternative to standard hardwood poles. Due to the increased cost, their use should generally be restricted to termite prone locations and bushfire areas.

Steel Butted Wood Poles must not be used for:

• Supporting voltage regulators
• Supporting transformers of 315KVA capacity and above
• Supporting 3 phase reclosers
• Installations within 5kms of the marine coast
• Installations in areas of known acid sulphate soils, such as low lying river/creek areas, wetlands and flood plains. (Under certain conditions sulphuric acid can form, degrading the steel)

Steel Butted Wood Poles can be used for:
• Intermediate constructions
• Strain constructions
• Termination constructions that are stayed
• Angle constructions that are stayed
• Transformer constructions up to 200KVA (Urban & Rural)
• Cable Termination constructions
• Gas Load Break Switch constructions
• S.W.E.R Recloser/Reactor constructions

7.5.5 Jointed Hardwood Poles and Composite Fibre Poles
Due to the cost penalties associated with these products, these are not to be used for general use.

7.6 Bushfire Mitigation
There are two fireproof paints and pole wrapped currently being trialled in the Rockhampton and Gladstone regions. For more information please contact the Distribution Network Standards Team.
7.7 V.P.I Wood Pole Specification and Fitting Details

Figure 7-1 – Pole Identification Disk

NOTES:

1. Registered Brand:
 To be in accordance with the timber utilization and marketing act 1987 (Queensland) or latest amendment thereof.

2. Material: Aluminium or aluminium alloy 2mm thick.

3. Diameter: 50mm.

4. Disc to be formed convex before fitting to pole.
 To be flattened during fitting into recess on pole.

5. Charge number or reference letter to be sequentially issued by supplier.

6. Letters and numbers to be 6mm minimum, legible and indelibly formed with metal punch or engraved on disc.
Table 7-1 – Acceptable Species for Poles

<table>
<thead>
<tr>
<th>Species Code</th>
<th>Standard Trade or Common Name</th>
<th>Botanical Name</th>
<th>Strength Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>Broad-leaved red ironbark</td>
<td>E. fibrosa ssp. fibrosa</td>
<td>S1</td>
</tr>
<tr>
<td>J</td>
<td>Cooktown ironwood</td>
<td>Erythrophleum chlorostachys</td>
<td>S1</td>
</tr>
<tr>
<td>GG</td>
<td>Grey gum</td>
<td>E. punctata</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. propinqua</td>
<td></td>
</tr>
<tr>
<td>GI</td>
<td>Grey ironbark</td>
<td>E. drepanophylla</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. paniculata</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>Hickory ash</td>
<td>E. flindersia ifflaiana</td>
<td>S1</td>
</tr>
<tr>
<td>BB</td>
<td>Blackbutt</td>
<td>E. piluaris</td>
<td>S2</td>
</tr>
<tr>
<td>CR</td>
<td>Crow’s ash</td>
<td>Flindersia australis</td>
<td>S2</td>
</tr>
<tr>
<td>GM</td>
<td>Gympie messmate</td>
<td>E. cloeziana</td>
<td>S2</td>
</tr>
<tr>
<td>GB</td>
<td>Grey box</td>
<td>E. moluccana</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. woolisiana</td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>Narrow-leaved red ironbark</td>
<td>E. crebra</td>
<td>S2</td>
</tr>
<tr>
<td>RI</td>
<td>Red ironbark</td>
<td>E. sideroxylon</td>
<td>S2</td>
</tr>
<tr>
<td>PW</td>
<td>Brown penda</td>
<td>Xanthostemon chrysanthus</td>
<td>S2</td>
</tr>
<tr>
<td>PD</td>
<td>Red penda</td>
<td>Xanthostemon whitei</td>
<td>S2</td>
</tr>
<tr>
<td>SG</td>
<td>Spotted gum</td>
<td>E. maculata</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. citriodora</td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>Tallowwood</td>
<td>E. microcorys</td>
<td>S2</td>
</tr>
<tr>
<td>FR</td>
<td>Forest red gum</td>
<td>E. tereticornis</td>
<td>S3</td>
</tr>
<tr>
<td>NA</td>
<td>New England blackbutt</td>
<td>E. andrewsii</td>
<td>S3</td>
</tr>
<tr>
<td>TP</td>
<td>Turpentine</td>
<td>Syncarpia glomulifera</td>
<td>S3</td>
</tr>
<tr>
<td>WS</td>
<td>White stringybark</td>
<td>E. eugenioides</td>
<td>S3</td>
</tr>
</tbody>
</table>
7.8 Poles Diameters and Masses

Table 7-2 – Concrete Poles Diameters and Masses

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>Standard Setting Depth (m) (Note 1)</th>
<th>Strength Rating (kN) (Note 2)</th>
<th>Diameter at Butt (mm)</th>
<th>Diameter at Head (mm)</th>
<th>Maximum Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>1.40</td>
<td>6</td>
<td>270</td>
<td>150</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>345</td>
<td>225</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>360</td>
<td>240</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>390</td>
<td>270</td>
<td>1170</td>
</tr>
<tr>
<td>9.5</td>
<td>1.55</td>
<td>6</td>
<td>292</td>
<td>150</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>367</td>
<td>225</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>382</td>
<td>240</td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>412</td>
<td>270</td>
<td>1440</td>
</tr>
<tr>
<td>11.0</td>
<td>1.70</td>
<td>6</td>
<td>315</td>
<td>150</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>390</td>
<td>225</td>
<td>1240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>405</td>
<td>240</td>
<td>1410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>435</td>
<td>270</td>
<td>1740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>480</td>
<td>315</td>
<td>2110</td>
</tr>
<tr>
<td>12.5</td>
<td>1.85</td>
<td>10</td>
<td>412</td>
<td>225</td>
<td>1480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>427</td>
<td>240</td>
<td>1680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>457</td>
<td>270</td>
<td>2060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>502</td>
<td>315</td>
<td>2490</td>
</tr>
<tr>
<td>14.0</td>
<td>2.00</td>
<td>10</td>
<td>435</td>
<td>225</td>
<td>1730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>450</td>
<td>240</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>480</td>
<td>270</td>
<td>2460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>525</td>
<td>315</td>
<td>2900</td>
</tr>
<tr>
<td>15.5</td>
<td>2.15</td>
<td>10</td>
<td>457</td>
<td>225</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>472</td>
<td>240</td>
<td>2270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>502</td>
<td>270</td>
<td>2830</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>547</td>
<td>315</td>
<td>3330</td>
</tr>
<tr>
<td>17.0</td>
<td>2.30</td>
<td>16</td>
<td>495</td>
<td>240</td>
<td>2790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>525</td>
<td>270</td>
<td>3220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>570</td>
<td>315</td>
<td>3780</td>
</tr>
<tr>
<td>18.5</td>
<td>see Note 3</td>
<td>16</td>
<td>517</td>
<td>240</td>
<td>3160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>547</td>
<td>270</td>
<td>3630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>592</td>
<td>315</td>
<td>4300</td>
</tr>
<tr>
<td>20.0</td>
<td>see Note 3</td>
<td>16</td>
<td>540</td>
<td>240</td>
<td>3560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>570</td>
<td>270</td>
<td>4070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>615</td>
<td>315</td>
<td>4810</td>
</tr>
<tr>
<td>21.5</td>
<td>see Note 3</td>
<td>16</td>
<td>562</td>
<td>240</td>
<td>3970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>592</td>
<td>270</td>
<td>4520</td>
</tr>
</tbody>
</table>

Notes:
1. Concrete poles shall be set in the ground to a depth of not less than 0.6m plus one tenth of the pole height unless otherwise specified. In poor soil, additional stability shall be provided by sinking the pole deeper, or by the use of stabilised fill or stays.
2. The Strength Rating (kN) is the limit state tip load under maximum wind conditions.
3. The setting depth for these taller poles needs to reflect the soil type. Contact distribution support department for details.
Table 7-3 – V.P.I. Wood Poles Diameters and Maximum Masses

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>Pole Description</th>
<th>Strength Group S1 (Note 3)</th>
<th>Strength Group S2 (Note 3)</th>
<th>Minimum Pole Diameters and Maximum Masses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diameter 2m from Butt (mm)</td>
<td>Diameter at Head (mm)</td>
<td>Maximum Mass (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Girth 2m from Butt (mm)</td>
<td>Maximum Mass (kg)</td>
<td>Girth 2m from Butt (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>1.40</td>
<td>3</td>
<td>410</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>195</td>
<td>913</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190</td>
<td>20</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>230</td>
<td>913</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>265</td>
<td>913</td>
<td>280</td>
</tr>
<tr>
<td>9.5</td>
<td>1.55</td>
<td>3</td>
<td>450</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>210</td>
<td>913</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>250</td>
<td>913</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>765</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>285</td>
<td>913</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>942</td>
</tr>
<tr>
<td>11.0</td>
<td>1.70</td>
<td>3</td>
<td>535</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>225</td>
<td>913</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>754</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>265</td>
<td>913</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>300</td>
<td>913</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1005</td>
</tr>
<tr>
<td>12.5</td>
<td>1.85</td>
<td>3</td>
<td>650</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>235</td>
<td>913</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>275</td>
<td>913</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>315</td>
<td>913</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1052</td>
</tr>
<tr>
<td>14.0</td>
<td>2.00</td>
<td>3</td>
<td>870</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>691</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250</td>
<td>913</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>833</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>290</td>
<td>913</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>330</td>
<td>913</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1100</td>
</tr>
<tr>
<td>15.5</td>
<td>2.15</td>
<td>3</td>
<td>1750</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>864</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>260</td>
<td>913</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1385</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>300</td>
<td>913</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1720</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>345</td>
<td>913</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1147</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>410</td>
<td>913</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1367</td>
</tr>
<tr>
<td>17.0</td>
<td>2.30</td>
<td>3</td>
<td>1500</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>265</td>
<td>913</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>310</td>
<td>913</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>355</td>
<td>913</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>2650</td>
</tr>
<tr>
<td>18.5</td>
<td>2.45</td>
<td>3</td>
<td>1870</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>911</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>275</td>
<td>913</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1870</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>320</td>
<td>913</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1068</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>370</td>
<td>913</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>435</td>
<td>913</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>1461</td>
</tr>
<tr>
<td>20.0</td>
<td>2.60</td>
<td>3</td>
<td>2220</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>942</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>285</td>
<td>913</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>2220</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>330</td>
<td>913</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>2780</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>380</td>
<td>913</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>3590</td>
</tr>
<tr>
<td>21.5</td>
<td>2.75</td>
<td>3</td>
<td>2615</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>974</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>290</td>
<td>913</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>2615</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>340</td>
<td>913</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>3245</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>390</td>
<td>913</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>4265</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>460</td>
<td>913</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>5420</td>
</tr>
</tbody>
</table>

Ergon Energy Corporation Limited ABN 50 087 646 062
Notes:

1. In accordance with the C(b)1-1999, a pole shall be set in the ground to a depth of not less than 0.6m plus one tenth of the pole length. In poor soil, additional stability shall be provided by sinking the pole deeper, or by the use of stabilised fill or stays.
2. The Strength Rating (kN) is the allowable pole top load under maximum wind conditions.
3. Strength groups are as defined in AS2878 “Timbers – Classification into Strength Groups”.

Table 7-4 – Steel Poles Diameters and Masses

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>Standard Setting Depth (m) (Note 1)</th>
<th>Strength Rating (kN) (Note 2)</th>
<th>Diameter (mm)</th>
<th>Maximum Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>1.55</td>
<td>15</td>
<td>273</td>
<td>317</td>
</tr>
<tr>
<td>12.5</td>
<td>1.85</td>
<td>12</td>
<td>273</td>
<td>420</td>
</tr>
<tr>
<td>14.0</td>
<td>2.00</td>
<td>13.5</td>
<td>273</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>323</td>
<td>651</td>
</tr>
</tbody>
</table>

Notes:

1. Steel poles shall be set in the ground to a depth of not less than 0.6m plus one tenth of the pole height unless otherwise specified. In poor soil, additional stability shall be provided by sinking the pole deeper, or by the use of stabilised fill or stays.
2. The Strength Rating (kN) is the limit state tip load under maximum wind conditions.
3. The setting depth for these taller poles needs to reflect the soil type. Contact distribution support department for details.
8. CROSSARMS

8.1 Hardwood Crossarm

The Queensland Electricity Supply Industry Technical Specification for Hardwood Crossarms ETS 07-02-01 specifies that timber shall generally be visually stress graded in accordance with AS 2082. The minimum stress grade for timber supplied to the specification is F17 except that only Structural Grade No 1 or 2 shall be accepted.

The F17 stress grade may be achieved by a number of combinations of strength group and structural grades. The minimum strength group allowable is S3, however the majority of crossarms supplied generally come into the strength group S2 and the additional specification requirement that the top surface be without visual defects effectively means that the actual F grade is generally somewhat better than F17. Timber stresses are to be based generally in accordance with AS 1720.1 1997 using a limit state approach.

Crossarms are specified with dimensional tolerance of ± 3mm and are supplied generally in an unseasoned state. Design stresses are therefore based on values for unseasoned timber and used in conjunction with the minimum under-tolerance value.

Crossarm duties are to comply with the most onerous of the following conditions:

Maximum Wind load case – using a limit state design wind pressure on conductors of 1200Pa in defined cyclone prone areas and 900Pa elsewhere.

Permanent or Long Duration load case – based on standard conductor tensions at 15°C under no wind conditions.

Maintenance load case – to account for loads generated during construction or maintenance activities – based on 100Pa wind loads at 15°C.

For Intermediate crossarms, it is assumed that there is a nominal longitudinal tension of 5% of the conductor tension.

Design of bolted connections is in accordance with AS1720.1 Section 4.4 using joint group J2. In general this will not be a limitation for the expected structure duties.

Timber stresses and load factors to be used for these load cases are as follows:

8.1.1 Maximum Wind Load

<table>
<thead>
<tr>
<th>Stresses</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design timber stress in Bending</td>
<td>37.8 MPa</td>
</tr>
<tr>
<td>Design timber stress in tension</td>
<td>22.4 MPa</td>
</tr>
</tbody>
</table>

Load factors are as follows:

- Allowance for wind loads shall be provided based on limit state wind pressure appropriate to the location.
- Vertical dead loads from non conductor loads (insulator and crossarm self weight) 1.1
- Vertical conductor loads 1.25
- Longitudinal conductor loads – based on limit state design wind pressure applied to appropriate MES (Mean Equivalent Span). 1.25

8.1.2 Permanent or Long Duration Load

Design timber stress in Bending 18 MPa
Design timber stress in tension 11 MPa

Load factors are as follows:

- No allowance to be provided for wind load
- Vertical dead loads from non conductor loads (insulator and crossarm self weight) 1.1
- Vertical conductor loads 1.25
- Longitudinal conductor loads – based on conductor EDT (Every Day Tension) at 15°C

8.1.3 Maintenance Load Case

Design timber stress in Bending 30.6 MPa
Design timber stress in tension 18.3 MPa

Load factors are as follows:

- Allowance for wind loads based on nominal wind pressure of 100Pa
- Vertical dead loads from non conductor loads 1.1
- Vertical conductor loads 1.5
- Longitudinal conductor loads based on 100Pa wind pressure applied to appropriate MES 1.5
- Weight of men and equipment 2.0
- Allowance to be provided for pole top rescue loads assuming weight of man at 1.0kN with mechanical advantage 2.0 on lowering line (i.e. load multiplication factor 1.5) applied 800mm from the pole.

Standard crossarm sizes for general application are as follows:

8.1.4 Sizes - Intermediate pin structure – both Flat and Delta

11kV
2400x100x100
2400x100x125

22/33kV
2700x100x100
2700x100x125

8.1.5 Sizes - Strain / Termination

11kV
2400x150x100 – single or double
2400x175x125 – single or double

22/33kV
2700x150x100 – single or double
2700x175x125 – single or double

8.1.6 Sizes – Intermediate/Fuse Crossarms

11kV Delta Pin/Intermediate
2400x100x100
2400x100x125

11kV Flat Pin/Intermediate
2700x100x100
2700x125x125

22/33kV Delta Pin/Intermediate
2700x100x100
2700x100x125
8.2 Composite Crossarm

Ergon Energy has traditionally used hardwood crossarms for distribution applications. Hardwood as a crossarm material has good electrical and structural properties and is relatively cheap however there are issues with manual handling, degradation in service and long-term supply availability. In order to address these issues, Ergon Energy has been investigating alternative materials and constructions.

One of the most promising alternatives is the use of composite fibre extruded section as a crossarm material. This product uses thermosetting resin binders including epoxies, vinyl esters, polyurethane or phenolic compounds combined with glass fibre reinforcement applied by a pultruded or filament winding process. This product has significant promise with regard to longevity, electrical performance and light weight.

8.2.1 Electrical Properties

Composite materials have very good insulation properties, to the extent that they could function as primary insulation, however there are other properties that must be considered with regard to their long term performance in power line applications. These relate to the arc quenching properties and resistance to surface erosion due to tracking from leakage currents.

Timber has properties that inhibit the establishment of power follow current following a lightning induced flashover. This has the effect of preventing a protection operation and subsequent momentary outage. Composite materials do not have such properties, however provided that the voltage gradient is reasonably low, the momentary outage performance are acceptable.

With hardwood crossarms, electrical leakage generated by pollution layers on the primary insulation has the potential to initiate pole top fires at bolt locations. Measures to prevent this by increasing the contact areas have generally proven to be successful.

With the first generation composite crossarm from Wagners, electrical leakage generated by salt pollution on arms erected in coastal locations caused severe surface erosion.

The second generation crossarm from Wagners is coated with a membrane of thermoplastic polymer alloy which has excellent electrical insulation and tracking resistance properties. Extensive tracking tests using inclined plate and fog chamber testing have been conducted. While this testing cannot give a definitive answer to the long term performance under service conditions, results to date has been satisfactory.

Electrical testing has also been carried out on PUPI composite crossarms to assess the electrical properties with regard to lightning impulse and performance under pollution conditions. Again while this testing cannot give a definitive answer to the long term performance under service conditions, results to date have also been satisfactory.

8.2.2 Structural Properties

Timber crossarms must meet structural requirements with regard to bending moments under short term wind load, maintenance loadings and sustained load conditions and bearing loads at attachment bolts as referred in previous section. These loads are defined by AS/NZS 1170. There is no equivalent Australian Standard relating to composite fibre crossarms and the provisions of the EUROCOMP Design Code “Structural Design of Polymer Composites” have been used as a reference for this purpose.
Crossarms manufactured by Wagners consist of 100x100x5 mm and 125x125x5 mm square hollow sections with square insert on bolt holes for structural integrity. Structural design and test data has been supplied and discussed with Wagner staff in order to equate loading capacities of the Composite crossarms to Ergon Energy’s design criteria.

Crossarms manufactured by PUPI consist of 100x100x5 mm square section with foam in-fill with circular insert on bolt holes for structural integrity. An additional backing plate is also included to transfer load from the crossarm at the king bolt location. Similar design and test data to equate loading capacities to timber has been carried for the PUPI crossarm.

A comparison of cross-section short-term ultimate strength properties is tabulated in Table 8-1. Other section properties can be acquired from the Distribution Network Standards Team.

Table 8-1 Comparison of Timber and Composite Cross-section

<table>
<thead>
<tr>
<th>Hardwood Timber Section (mm x mm)</th>
<th>Equivalent Wagners Section (mm x mm)</th>
<th>Equivalent PUPI/RMS Section (mm x mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 x 100</td>
<td>100 x 100</td>
<td>100 x 100</td>
</tr>
<tr>
<td>100 x 125</td>
<td>100 x 100</td>
<td>100 x 100</td>
</tr>
<tr>
<td>100 x 150</td>
<td>125 x 125</td>
<td>125 x 125</td>
</tr>
<tr>
<td>175 x 125</td>
<td>125 x 125</td>
<td>125 x 125</td>
</tr>
</tbody>
</table>

8.2.3 UV Performance

The Wagner’s second generation crossarm design provides for a membrane of thermoplastic polymer alloy heat bonded to the fibre composite substrate. The crossarm coating was tested in a QUV accelerated weather meter in compliance with ASTM G 154-02 for a minimum of 5000 hours. To date the coating samples have endured over 400 cycles with the following results:

- No significant colour change
- No visual cracking, peeling or coating disruption to adhered sample
- Some loss of gloss is apparent

Although this testing cannot be directly correlated to a number of years in service, indications are that the composite crossarms should have a service life of the same order or better than hardwood crossarms.

The PUPI crossarms have a similar UV protection that is also thermally bonded to the surface that has gone under rigorous testing. There is also a UV resistance polyester veil and inhibitor within the internal layers of the crossarms.

8.2.4 Weight Component

The main advantage of the composite crossarm is its weight over hardwood equivalents. The 100 x 100 section weighs only at 5.5kg/m and the 125 x 125 section at 8kg/m. As a result of this field staff have taken a liking to using the crossarms and the inherent consequence of eliminating soft tissue damage such as jammed fingers, back injuries, and other manual handling issues.

8.2.5 Criteria for Use

There are several constructions available in the OH Construction Manual for the use of the composite crossarms. Currently they fall under the following criteria:

- Wagners Composite Crossarms:
For use in both HV and LV constructions
For use in new constructions as per the OH Construction Manual
For use in maintenance construction under the "like for like" methodology approved by the Distribution Network Standards Team and Maintenance Standards Team
Design and constructions checked and approved by the Line Design Team

- PUPI Composite Crossarms:
 - For use in LV construction only
 - For use in new constructions as per the OH Construction Manual
 - For use in maintenance construction under the "like for like" methodology approved by the Distribution Network Standards Team and Maintenance Standards Team
 - Design and constructions checked and approved by the Line Design Team

- The Composite crossarms are roughly 2 x the price of timber arms so it is recommended that they be used for maintenance and new constructions where the fitting of the crossarm would be carried out in the air, by access from a EWP or pole platform.

- Hardwood crossarms are the general standard, being the most cost effective and are recommended for new constructions where the crossarm would be fitted to the pole on the ground. For the heavier wood cross arms (175 x 125) the intention is where possible to adopt alternative lifting arrangements (borer lifter/crane, fork lift, extra man power). If this is not possible it is recommended to use the appropriate Composite crossarm to reduce manual handling issues.

8.2.6 Additional Information

An ongoing trial is underway for the PUPI crossarm in HV installations in Yeppoon area. The trial has been going for more than 18 months and the crossarms has survived Cyclone Marcia in February 21, 2015.
9. STAYS

9.1 Stay Design

The limit state strength of a particular stay type is determined by the least value of the strength of the:

- eyebolt
- staywire
- stay insulator
- foundation

Component strengths for each of these components are tabulated for the range of components used in the OH constructions as follows:

Table 9-1 – Eyebolt Strength

<table>
<thead>
<tr>
<th>Bolt Diameter</th>
<th>Tensile Stress Area (MPa)</th>
<th>Ultimate Strength (kN)</th>
<th>Strength Factor</th>
<th>Limit State Strength (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24</td>
<td>350</td>
<td>143.5</td>
<td>0.8</td>
<td>114.8</td>
</tr>
</tbody>
</table>

The allowable bearing strength on the pole timber limits the loading that can be applied at the interface with the eyebolt when 19/2.75 staywire is used and hence a Cast 2 Bolt Stay Bracket connection to the pole is used with this staywire.

Table 9-2 – Staywire Strength

<table>
<thead>
<tr>
<th>Staywire</th>
<th>Min. Breaking Load (kN)</th>
<th>Strength Factor</th>
<th>Limit State Strength (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2.75 SC/GZ</td>
<td>51.8</td>
<td>0.8</td>
<td>41.44</td>
</tr>
<tr>
<td>19/2.00 SC/GZ</td>
<td>74.4</td>
<td>0.8</td>
<td>59.5</td>
</tr>
<tr>
<td>19/2.75 SC/GZ</td>
<td>141</td>
<td>0.8</td>
<td>112.8</td>
</tr>
</tbody>
</table>

The stay insulator strengths are as follows:

Table 9-3 – Stay Insulator

<table>
<thead>
<tr>
<th>Stay Insulator</th>
<th>Min. Failing Load (kN)</th>
<th>Strength Factor</th>
<th>Limit State Strength (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GY2</td>
<td>71</td>
<td>0.8</td>
<td>56.8</td>
</tr>
<tr>
<td>GY3</td>
<td>222</td>
<td>0.8</td>
<td>177.6</td>
</tr>
<tr>
<td>GY4</td>
<td>222</td>
<td>0.8</td>
<td>177.6</td>
</tr>
</tbody>
</table>

9.2 Foundations

Available foundation types are screw anchor, concrete bedlog, a poured concrete and rock anchor. A strength factor of 0.7 has been applied to these foundations.

Screw anchors are to be installed to the installation hydraulic pressure specified in the OH Construction Manual to obtain capacity to match the stay type.

Concrete bedlogs are to be installed to a depth determined by the stay rod length. For 2700mm rods, the depth will be 1.9m for 45° stays and 2.3m for 60° stays.
Allowable loads for bedlogs are based on soil weight using a frustum angle of 30° for good to medium soils and 20° for well compacted sand or waterlogged clay soils. Bedlogs are not suitable for installation in loose sandy soils or swampy soils.

9.3 Stay Attachment Location

In general, the stay should be located as close as possible to the load centre. Select the appropriate stay whose allowable horizontal load capacity from the Table 9-4 – Allowable Limit State Loads (in kN) is greater than the horizontal load due to the conductor termination or deviation loads.

Where the stay attachment is not close to the load centre, calculate the equivalent horizontal load on the stay, P, due to the conductor termination or deviation loads as follows:

$$P = L_1 (1 + 3x/2y)$$

Figure 9-1 – Calculation for Horizontal Load on a Stay

9.4 Pole Load at Stay Attachment

Where the Stay attachment is not located close to the load centre, the pole must be designed to resist the long duration and short duration bending moments which will occur in the pole at the stay attachment.

$$P = L_1 (1 + 3b/2a) + L_2 (1 - 3c/2a)$$

Figure 9-2 – Calculation Variables for Stay Attachments Not Close to Load Centre

i.e. $\sigma Z \Rightarrow L_1 x + \text{Wind moment on pole}$

Where:

- L_1 = horizontal load due to conductors
- x = distance from load centre to stay attachment
- Z = modulus of pole at stay attachment point
- $= \pi D^3/32$ (mm3)
- D = diameter of pole at stay attachment
- σ = maximum allowable bending stress in pole as listed in the section “Poles”
The wind moment on the pole can be calculated by taking the area of the pole above the stay multiplied by the design wind pressure and by \(x / 2 \).

Loads under both the limit state and sustained load condition should be checked. The majority of pole species fall into the strength group 2 and a check carried out using strength group 2 stresses and diameters will generally be satisfactory for the other strength group stress / diameter cases.

9.5 Stay Applications

Component make up and strengths for the range of applicable stay types are listed in the Stay Components in Table 9-4 and their application is described briefly as follows.

9.5.1 Ground Stay Types GS1, GS2 and GS3

These are stays for general application and are installed with a stay insulator except in situations where the stay is used on a bollard.

The preferred angle to the horizontal is 45° however they can be used at 60° in restricted locations with the capacity reduced accordingly.

9.5.2 Aerial Stays AS1, AS2 and AS3

These are installed to a bollard at an angle to the horizontal that should not exceed 30°.

A ground stay on the bollard may or may not be installed depending on the design load requirement.

If an unstayed bollard is used, the allowable horizontal load can be determined from the tables in Section 7 Poles for the appropriate bollard size and cyclonic / non-cyclonic wind pressure area. Attention to the foundation design will be necessary to ensure that the necessary load capacity is available.

9.5.3 Sidewalk Stays

These stays are for use in restricted urban locations only and then only for low tension and short span applications. The purpose of this stay type is to maintain the staywire at an angle close to vertical in order to minimise hindrance to pedestrian traffic.

The stay would normally be installed at a location from 2.4 to 3m from the pole. Increasing the spacing to 3m or more will result in significantly reduced loadings on the stay components.

This stay design results in high loadings in the stay components and attention should be given to the foundation design and installation.

The design also places high bending moments in the pole and use of an 8kN pole is therefore required for the SS3 application.

9.5.4 Stay Orientation

The selections of stay orientation for bisect angles will be influenced by site constraints and construction practicalities however in general, the following guidelines should be followed:

- For a bisect angle on pin insulators, use a single bisect stay. In general this angle will be limited by the restriction to maintain everyday deviation loads on pin insulators to 0.5kN.
- For line deviation angles up to 45° using strain crossarms, use either a bisect stay or two termination stays – if termination stays are used, they should be offset 1.5m away from the angle.

- For line deviation angles above 45°, use termination stays in both directions with a 1.5m offset.

Figure 9-3 – 1.5m Stay Offsets for Line Deviations above 45°
Table 9-4 – Allowable Limit State Loads (in kN)

<table>
<thead>
<tr>
<th>STAY COMPONENTS</th>
<th>STAY TYPE</th>
<th>GS1</th>
<th>GS2</th>
<th>GS3</th>
<th>SS2</th>
<th>SS3</th>
<th>AS1</th>
<th>AS2</th>
<th>AS3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45° 60°</td>
<td>45°</td>
<td>60°</td>
<td>45°</td>
<td>60°</td>
<td>45°</td>
<td>60°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyebolt /Stayrod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M24</td>
<td>115.8</td>
<td>115.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staywire</td>
<td>7/2.75</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/2.00</td>
<td>59</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/2.75</td>
<td>112</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stay Insulator</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GY2 LV</td>
<td>177.6</td>
<td>177.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GY3 11/22kV</td>
<td>177.6</td>
<td>177.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GY4 33kV</td>
<td>177.6</td>
<td>177.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Anchor foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Anchor to appropriate installation torque</td>
<td>42</td>
<td>60</td>
<td>114</td>
<td>60</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedlog Foundation - Medium Soil</td>
<td></td>
<td>105</td>
<td>105</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5x0.19 D 1.9</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5x0.19 D 2.3</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable limit state tension in stay</td>
<td>41</td>
<td>41</td>
<td>59</td>
<td>59</td>
<td>105</td>
<td>112</td>
<td>59</td>
<td>112</td>
<td>41</td>
</tr>
<tr>
<td>Horizontal component at pole for screw anchors or bedlogs in good to medium soil</td>
<td>28</td>
<td>20</td>
<td>41</td>
<td>29</td>
<td>74</td>
<td>56</td>
<td>9</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>Horizontal component at pole for bedlogs in sandy soil or waterlogged clay</td>
<td>23</td>
<td>20</td>
<td>41</td>
<td>29</td>
<td>46</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. INSULATORS

10.1 Insulator Loads and Applications

10.1.1 Insulator and Hardware

Design loads for insulators, stay fittings and miscellaneous hardware (with the exception of insulator pins) under the ultimate strength limit state case are to be based on the appropriate failing load factored by the Component strength factor as listed in table 6.2 of AS/NZS 7000 as follows:

- Fittings – forged and fabricated: 0.8
- Fittings – cast: 0.7
- Porcelain and Glass insulators: 0.8
- Synthetic of composite strain insulators (one minute mechanical strength): 0.7
- Synthetic of composite strain insulators (long term mechanical strength): 0.4

10.1.2 Insulator Pin Loadings

Insulator pins are rated at 7 and 11kN failing load for 11 and 22kV insulator applications and a strength factor of 0.8 would be applied in accordance with the provisions of C(b)1 to determine limit state design loads.

However in order to facilitate construction and maintenance operations, limit angular deflections of the pins and avoid conductor birdcaging, sustained transverse loads on pin insulators should be limited to 0.5kN under everyday tension conditions or a maximum angle of 20°. The resulting deviation angles on single pin insulators are listed on the tables later in this section.

10.1.3 Insulator Selection with Regard to Pollution.

Selection of insulators in pollution prone environments is generally based on the surface creepage length per kV rms line to ground voltage.

Australian Standard 1824.2 – Insulation coordination grades the severity of pollution at a site as follows:

<table>
<thead>
<tr>
<th>Severity of pollution at site</th>
<th>Location</th>
<th>Recommended surface creepage – mm per kV of line to ground voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Sites beyond 10 km from the coast and without local pollution sources.</td>
<td>25 to 35</td>
</tr>
<tr>
<td>Moderate</td>
<td>Sites 3 to 10 km from the coast or 0.3 to 1km from salt lakes or bays. Sites near inland power stations or sources of conductive dust.</td>
<td>30 to 40</td>
</tr>
<tr>
<td>Heavy</td>
<td>Sites 1 to 3 km from the coast or within 0.3 km of salt lakes or bays. Sites near large chemical works or exposed to severe dust deposits.</td>
<td>35 to 50</td>
</tr>
<tr>
<td>Extreme</td>
<td>Sites within 1 km of the sea, close to heavy industry or intense sources of high conductivity dust.</td>
<td>>50</td>
</tr>
</tbody>
</table>

The surface creepage length per kV is only an indicator of insulator pollution performance and other factors such as frequency of heavy rain and insulator shed profile will influence the pollution.
performance of insulators. Insulators with an open or aerodynamic profile may perform best in areas subject to regular rainfall while insulators with generous protected creepage distance may be a better solution in areas subject to long dry spells.

The approach specified in the Insulator selection guide Figures 10-1 to Figures 10-3 is to provide for a higher voltage class insulator to be used as the favoured option for pollution prone areas.

In general, the insulators provided for ERGON SCM constructions for “standard” pollution areas will have creepage lengths in the range covered by the Light to moderate ranges in the above table. Insulators specified as “pollution” by the selection guide will in general be sufficient to cater for sites classed as “heavy”.

In general, sites along the Queensland coast even though within 1 km of the ocean could be classified as “heavy” rather than “extreme” due to the probability of rainfall at reasonable regular intervals. Exception may be situations exposed to high levels of wind borne salt spray, e.g. on a rocky headland or adjacent to a surf beach.

Any sites which could be considered to come in the “extreme” category because of the nature of the site or based on a past history of pollution outages should be referred to the standards group for further advice.
<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>2.5% EDT</th>
<th>6% EDT</th>
<th>10% EDT</th>
<th>20% EDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra</td>
<td>7/3.00 AAC</td>
<td>20°</td>
<td>20°</td>
<td>20°</td>
<td>18°</td>
</tr>
<tr>
<td>Mars</td>
<td>7/3.75 AAC</td>
<td>20°</td>
<td>20°</td>
<td>20°</td>
<td>12°</td>
</tr>
<tr>
<td>Moon</td>
<td>7/4.75 AAC</td>
<td>20°</td>
<td>20°</td>
<td>15°</td>
<td>7°</td>
</tr>
<tr>
<td>Pluto</td>
<td>19/3.75 AAC</td>
<td>20°</td>
<td>14°</td>
<td>8°</td>
<td>4°</td>
</tr>
<tr>
<td>Saturn</td>
<td>37/3.00 AAC</td>
<td>20°</td>
<td>11°</td>
<td>6°</td>
<td>3°</td>
</tr>
<tr>
<td>LV ABC (Suspension Clamps)</td>
<td>4 x 95 sq mm</td>
<td>15°</td>
<td>15°</td>
<td>15°</td>
<td>N.A.</td>
</tr>
<tr>
<td>LV ABC (Angle Clamps)</td>
<td>4 x 95 sq mm</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
<td>N.A.</td>
</tr>
<tr>
<td>Apple</td>
<td>6/1/3.0 ACSR</td>
<td>20°</td>
<td>20°</td>
<td>19°</td>
<td>9°</td>
</tr>
<tr>
<td>Cherry</td>
<td>6/4.75 + 7/160 ACSR</td>
<td>20°</td>
<td>14°</td>
<td>8°</td>
<td>4°</td>
</tr>
</tbody>
</table>

AAAC, ACSR, SC/GZ and SC/AC Conductors

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>% EDT</th>
<th>Deviation Angle Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>7/2.5 AAAC</td>
<td>20%</td>
<td>17°</td>
</tr>
<tr>
<td>Fluorine</td>
<td>7/3.00 AAAC</td>
<td>20%</td>
<td>12°</td>
</tr>
<tr>
<td>Helium</td>
<td>7/3.75 AAAC</td>
<td>20%</td>
<td>8°</td>
</tr>
<tr>
<td>Iodine</td>
<td>7/4.75 AAAC</td>
<td>20%</td>
<td>5°</td>
</tr>
<tr>
<td>Apple</td>
<td>6/1/3.0 ACSR</td>
<td>22%</td>
<td>8°</td>
</tr>
<tr>
<td>Banana</td>
<td>6/1/3.75 ACSR</td>
<td>22%</td>
<td>5°</td>
</tr>
<tr>
<td>Raisin</td>
<td>3/4/2.5 ACSR</td>
<td>22%</td>
<td>5°</td>
</tr>
<tr>
<td>Sultana</td>
<td>4/3/3.0 ACSR</td>
<td>22%</td>
<td>4°</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td></td>
<td>25%</td>
<td>5°</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td></td>
<td>25%</td>
<td>5°</td>
</tr>
<tr>
<td>Cherry</td>
<td>6/4.75 + 7/160 ACSR</td>
<td>22%</td>
<td>3°</td>
</tr>
</tbody>
</table>

Note:
For Trident constructions, the same limitations as for pin insulators should be applied.
Figure 10-1 – Pin and Post Insulators Selection Guide (11/22/33kV)
Figure 10-2 – Pin, Post and Strain Insulators Selection Guide (S.W.E.R.)

PIN AND POST INSULATORS SELECTION GUIDE - S.W.E.R.

VOLTAGE
- 11/12.7/19.1kV SWER

POLLUTION LEVEL
- STANDARD
- POLLUTION

CONSTRUCTION
- Wood pole

INSULATOR
- Line Pin Insulator
 - Standard
 - 33kV/170 B.I.L.
 - Creepage Lgth 534mm
 - I.I. No. 0560445
- Tie Top Line
 - Post Insulator
 - 33kV/170 B.I.L.
 - Creepage Lgth 590mm
 - I.I. No. 0104200
- Disc Insulators
 - Pollution
 - Creepage Lgth 840mm
 - I.I. No. 0551004 (B & S)
 - I.I. No. 2402986 (C & T)

STRAIN INSULATORS SELECTION GUIDE - S.W.E.R.

VOLTAGE
- 11/12.7/19.1kV SWER

POLLUTION LEVEL
- STANDARD
- POLLUTION

CONSTRUCTION
- Wood pole

INSULATOR
- Disc Insulators
 - Pollution
 - Creepage Lgth 840mm
 - I.I. No. 0551004 (B & S)
 - I.I. No. 2402986 (C & T)
Figure 10-3 – Strain Insulators Selection Guide (11/22/33kV)
11. POLE STRUCTURES

11.1 Structure Applications

This section lists the structure designs and duty limitations that would be applicable for general application.

A suite of design software is provided as detailed in the section “Overhead Design Programs” which allow calculation of allowable duties for other situations.

Alternatively calculations could be carried out from first principles using conductor loads derived from stringing charts or tension change calculations.

11.1.1 Urban Applications

The preferred available design for 11 and 22kV HV urban use is the trident and is applied using AAC conductors at tensions of 2.5%, 6% or 10%. For 33kV, the standard construction is the delta. This construction is used with preformed ties without armour rods or vibration dampers.

The spanning limitation of the trident intermediate structure with respect to mid span conductor clearance, ground clearance and wind span loading are listed in the following tables for a range of pole sizes and strengths that would be applicable for general applications.

These allowable structure duties are based on the assumption that the poles are also fitted with 4x 95mm² LVABC conductors installed at the same % CBL as HV conductors and provision for a single service take off at right angles to the line is included. A tension of 1.8kN limit state load is assumed for the service.

Staying requirements for termination and strain trident structures for the range of urban tensions are listed in the section “Urban Strain / Termination” which lists staying options for termination structures and maximum deviation angles for unstayed poles and poles with bisect stays.

HV flat construction is provided for situations requiring tee offs, crosscheck arms or subsidiary circuits. Requirements for crossarm sizes in these situations can be determined using the program “Crossarm Design”.

11.1.2 Rural Applications

The preferred available design for 11 and 22 and 33kV HV rural use is the delta and is applied using the range of conductor types and tensions listed in the section “Standard Conductor Applications”. This construction is used with preformed ties and armour rods. In general, vibration dampers should be applied at these tensions except in situations where the line passes through timbered areas with tree heights that project up to or above the conductor height and are not likely to be cleared in the future.

The spanning limitation of the delta intermediate structure with respect to mid span conductor clearance, ground clearance and wind span loading are listed in the following tables for a range of pole sizes and strengths that would be applicable for common applications.

These allowable structure duties are based on the assumption that the poles are not fitted with any subsidiary conductors.

Staying requirements for termination and strain structures for the range of rural tensions are listed in the section “Rural Strain / Termination” which lists staying options for termination structures and maximum deviation angles for unstayed poles and poles with bisect stays.

HV flat construction is provided for situations requiring tee off or subsidiary circuits. Requirements for crossarm sizes in these situations can be determined using the program “Crossarm Design”.
11.2 Intermediate Urban 11kV TRIDENT Constructions – Duties for common applications

For a 3 Phase Construction with subsidiary LV ABC 4x95mm² and allowance for 1.5kN Service Load

- Foundations standard depth plus 150mm
- Layout temperature 75°C for HV and 80°C for LV
- Maximum Span for ground clearance limitation based on 5.8m clearance for LV on level ground

Table 11-1 – Specifications for Urban Intermediate Wood Pole (11kV)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Maximum Span - mid span clearance limitation (m)</th>
<th>Standard Pole Ht (m)</th>
<th>Maximum Span - ground clearance limitation (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL</td>
<td>60 m</td>
<td>94</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>128</td>
<td>14</td>
<td>5</td>
<td>120</td>
<td>2</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL</td>
<td>60 m</td>
<td>92</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>114</td>
<td>8</td>
<td>5</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL</td>
<td>60 m</td>
<td>92</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>84</td>
<td>4</td>
<td>5</td>
<td>84</td>
<td>4</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL</td>
<td>60 m</td>
<td>92</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>84</td>
<td>4</td>
<td>5</td>
<td>84</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes:
1. Shading indicates that the Maximum Deviation Angle is limited by the deviation angle limit of the insulator.
2. Where there is subsidiary LV ABC on the pole, the Maximum Deviation Angle may be limited further depending whether suspension clamps or angle clamps are used.
3. Refer to Table 10-2 “Pin Insulators Deviation Angle Limits” in the “Insulators” Section 10 of this standard for these limitations.
11.3 Intermediate Urban 22kV TRIDENT Constructions – Duties for common applications

For a 3 Phase Construction with subsidiary LV ABC 4x95mm² and allowance for 1.5kN Service Load

Foundations standard depth plus 150mm

Layout temperature 75°C for HV and 80°C for LV

Maximum Span for ground clearance limitation based on 5.8m clearance on level ground

Table 11-2 – Specifications for Urban Intermediate Wood Pole (22kV)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Maximum Span - mid span clearance limitation (m)</th>
<th>Standard Pole Ht (m)</th>
<th>Maximum Span - ground clearance limitation (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>72</td>
<td>12.5</td>
<td>41</td>
<td>5</td>
<td>128</td>
<td>20</td>
<td>5</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>104</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>128</td>
<td>14</td>
<td>5</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>71</td>
<td>12.5</td>
<td>41</td>
<td>5</td>
<td>114</td>
<td>20</td>
<td>5</td>
<td>80</td>
<td>19</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>103</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>114</td>
<td>11</td>
<td>5</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>70</td>
<td>12.5</td>
<td>41</td>
<td>5</td>
<td>99</td>
<td>20</td>
<td>5</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>103</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>99</td>
<td>8</td>
<td>5</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>71</td>
<td>12.5</td>
<td>41</td>
<td>5</td>
<td>84</td>
<td>19</td>
<td>5</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>103</td>
<td>12.5</td>
<td>60</td>
<td>5</td>
<td>84</td>
<td>4</td>
<td>5</td>
<td>59</td>
<td>-</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>135</td>
<td>14</td>
<td>97</td>
<td>5</td>
<td>120</td>
<td>2</td>
<td>5</td>
<td>83</td>
<td>-</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>133</td>
<td>14</td>
<td>97</td>
<td>5</td>
<td>107</td>
<td>-</td>
<td>8</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>133</td>
<td>14</td>
<td>97</td>
<td>5</td>
<td>93</td>
<td>-</td>
<td>8</td>
<td>122</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes:
1. Shading indicates that the Maximum Deviation Angle is limited by the deviation angle limit of the insulator.
2. Where there is subsidiary LV ABC on the pole, the Maximum Deviation Angle may be limited further depending whether suspension clamps or angle clamps are used.
3. Refer to Table 10-2 “Pin Insulators Deviation Angle Limits” in the “Insulators” Section 10 of this standard for these limitations.
11.4 Intermediate Urban 33kV DELTA Constructions – Duties for common applications

For a 3 Phase Construction with subsidiary LV ABC 4x95mm² and allowance for 1.5kN Service Load
Foundations standard depth plus 150mm
Delta is of standard height unless otherwise stated
Layout temperature 75°C for HV and 80°C for LV
Crossarm size 2700x100x100 satisfactory for all applications below for weight spans up to ruling span plus 10%
Maximum Span for ground clearance limitation based on 5.8m clearance for LV on level ground

Table 11-3 – Specifications for Urban Intermediate Wood Pole (33kV)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Maximum Span - mid span clearance limitation (m)</th>
<th>Standard Pole Ht (m)</th>
<th>Maximum Span - ground clearance limitation (m)</th>
<th>Non-Cyclonic Area</th>
<th>Cyclonic Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pole Strength Tip Rating (kN)</td>
<td>Pole Strength Tip Rating (kN)</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>86</td>
<td>12.5</td>
<td>41</td>
<td>5 128</td>
<td>5 90 20</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>84</td>
<td>12.5</td>
<td>41</td>
<td>5 114</td>
<td>5 80 19</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>84</td>
<td>12.5</td>
<td>41</td>
<td>5 100</td>
<td>5 70 14</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>84</td>
<td>12.5</td>
<td>41</td>
<td>5 84</td>
<td>5 59 8</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>125</td>
<td>12.5</td>
<td>60</td>
<td>5 128</td>
<td>5 90 6</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>123</td>
<td>12.5</td>
<td>60</td>
<td>5 114</td>
<td>5 80 4</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>122</td>
<td>12.5</td>
<td>60</td>
<td>5 100</td>
<td>5 70 2</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>123</td>
<td>12.5</td>
<td>60</td>
<td>5 84</td>
<td>5 59</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>161</td>
<td>14</td>
<td>97</td>
<td>5 120</td>
<td>5 83</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>159</td>
<td>14</td>
<td>97</td>
<td>5 107</td>
<td>8 140 5</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>158</td>
<td>14</td>
<td>97</td>
<td>5 94</td>
<td>8 123 3</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>159</td>
<td>14</td>
<td>97</td>
<td>8 145</td>
<td>8 104</td>
</tr>
</tbody>
</table>

Notes:
1. Shading indicates that the Maximum Deviation Angle is limited by the deviation angle limit of the insulator.
2. Where there is subsidiary LV ABC on the pole, the Maximum Deviation Angle may be limited further depending whether suspension clamps or angle clamps are used.
3. Refer to Table 10-2 “Pin Insulators Deviation Angle Limits” in the “Insulators” Section 10 of this standard for these limitations.
11.5 Intermediate Rural 11kV DELTA Constructions – Duties for common applications

For a 3 Phase Construction with no LV on Pole

- Foundations standard depth plus 150mm
- Delta is of standard height unless otherwise stated
- Layout temperature 60°C
- Crossarm size 2400x100x100 satisfactory for all applications below for weight spans up to the ruling span plus 10% with the exception of Pluto which requires a 2400x100x125 Crossarm
- Maximum Span for ground clearance limitation based on 6.0m clearance on level ground

Table 11-4 – Specifications for Rural Intermediate Wood Pole (11kV)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Standard Pole Ht (m)</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (KN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°) (Note 2)</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (KN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°) (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5 14</td>
<td>223 184 5 318 14</td>
<td>186 139 5 227 7</td>
<td></td>
<td></td>
<td></td>
<td>186 139 5 227 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5 14</td>
<td>222 163 5 253 8</td>
<td>208 153 5 180 7</td>
<td></td>
<td></td>
<td></td>
<td>208 153 5 180 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5 14</td>
<td>221 163 5 200 3</td>
<td>221 163 5 142 1</td>
<td></td>
<td></td>
<td></td>
<td>221 163 5 142 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5 14</td>
<td>222 163 5 152 -</td>
<td>222 163 5 183 2</td>
<td></td>
<td></td>
<td></td>
<td>222 163 5 183 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine 7/3.55 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>12.5 14</td>
<td>256 191 5 382 8</td>
<td>299 158 5 272 1</td>
<td></td>
<td></td>
<td></td>
<td>299 158 5 272 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium 7/3.55 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>12.5 14</td>
<td>279 207 5 253 -</td>
<td>285 197 8 305 3</td>
<td></td>
<td></td>
<td></td>
<td>285 197 8 305 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>12.5 14</td>
<td>275 204 8 333 4</td>
<td>275 204 8 241 -</td>
<td></td>
<td></td>
<td></td>
<td>275 204 8 241 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>12.5 14</td>
<td>299 221 5 318 3</td>
<td>283 210 8 383 7</td>
<td></td>
<td></td>
<td></td>
<td>283 210 8 383 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana 6/1/3.5 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>12.5 14</td>
<td>296 219 5 253 -</td>
<td>296 219 8 305 2</td>
<td></td>
<td></td>
<td></td>
<td>296 219 8 305 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>12.5 14 15.5</td>
<td>371 316 5 368 1</td>
<td>371 276 8 459 5</td>
<td></td>
<td></td>
<td></td>
<td>371 276 8 459 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sultana 4/3/3.0 ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>12.5 14 15.5</td>
<td>356 315 5 359 1</td>
<td>356 265 8 383 2</td>
<td></td>
<td></td>
<td></td>
<td>356 265 8 383 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Shading indicates that the Maximum Span is limited by the Transition Span of the conductor.
2. Shading indicates that the Maximum Deviation Angle is limited by the deviation angle limit of the insulator.
11.6 Intermediate Rural 22kV DELTA Constructions – Duties for common applications

For a 3 Phase Construction with no LV on Pole
Foundations standard depth plus 150mm
Delta is of standard height unless otherwise stated
Layout temperature 60°C
Crossarm size 2700x100x100 satisfactory for all applications below for weight spans up to ruling span plus 10% with the exception of Pluto, Iodine and Sultana which require 2700x100x125 Crossarm
Maximum Span for ground clearance limitation based on 6.0m clearance on level ground

Table 11-5 – Specifications for Rural Intermediate Wood Pole (22kV)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°) (Note 2)</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Deviation Angle on unstayed pole for wind span equal to assumed ruling span (°) (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>229 166 5 317 13 191 140 5 225 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>228 165 5 252 8 212 154 5 179 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>227 164 5 199 3 227 164 5 142 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>228 165 5 151 - 228 165 8 182 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine 7/3.75 AAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>283 192 5 380 8 215 159 5 271 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium 7/3.75 AAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>287 208 5 252 - 273 199 8 303 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine 7/4.75 AAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>282 206 8 331 4 282 206 8 239 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>307 223 5 317 9 281 212 8 381 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana 6/1/3.5 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>304 221 5 252 8 253 221 8 303 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>381 278 5 390 2 381 278 8 457 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sultana 4/3/3.0ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>355 353 8 357 1 353 8 433 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL</td>
<td>350 m</td>
<td>366 267 5 317 - 366 267 8 381 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL</td>
<td>350 m</td>
<td>504 367 5 481 4 504 367 8 342 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Shading indicates that the Maximum Span is limited by the Transition Span of the conductor.
2. Shading indicates that the Maximum Deviation Angle is limited by the deviation angle limit of the insulator.
11.7 Intermediate Rural 33kV DELTA Constructions – Duties for common applications

For a 3 Phase Construction with no LV on Pole

Foundations standard depth plus 150mm

Delta is of standard height unless otherwise stated

Layout temperature 60°C

Crossarm size 2700x100x100 satisfactory for all applications below for weight spans up to ruling span plus 10% with the exception of Pluto, Iodine and Sultana which require 2700x100x125 Crossarm

Maximum Span for ground clearance limitation based on 6.0m clearance on level ground

Table 11-6 – Specifications for Rural Intermediate Wood Pole (33kV)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span (m)</th>
<th>Standard Pole Height (m)</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Allowable Wind Span with 0° deviation (m)</th>
<th>Maximum Span - mid span clearance limitation (m) (Note 1)</th>
<th>Maximum Span - ground clearance limitation (m) (Note 1)</th>
<th>Pole Strength Tip Rating (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5</td>
<td>244 166 5 318 13 178 140 5 225 6</td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5</td>
<td>253 188 5 252 8 198 154 5 179 2</td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.5</td>
<td>212 188 5 89 3 122 198 5 234 6</td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>12.4</td>
<td>253 188 5 91 1 255 165 5 270 1</td>
<td></td>
</tr>
<tr>
<td>Chlorine 7/3.75 AAA</td>
<td>20% CBL</td>
<td>250 m</td>
<td>12.5</td>
<td>245 220 5 366 7 201 182 5 267 1</td>
<td></td>
</tr>
<tr>
<td>Helium 7/3.75 AAAQ</td>
<td>20% CBL</td>
<td>250 m</td>
<td>12.5</td>
<td>268 238 5 252 8 255 253 5 264 5 286 3</td>
<td></td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>12.5</td>
<td>264 238 5 326 3 264 253 8 264 8 253 6</td>
<td></td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>12.5</td>
<td>287 238 5 318 3 272 212 8 238 1</td>
<td></td>
</tr>
<tr>
<td>Banana 6/1/3.75 AC</td>
<td>22% CBL</td>
<td>250 m</td>
<td>12.5</td>
<td>284 238 5 305 2 284 221 8 303 2</td>
<td></td>
</tr>
<tr>
<td>Raisin 3/4/2.5 AC</td>
<td>22% CBL</td>
<td>320 m</td>
<td>12.5</td>
<td>356 279 5 380 2 356 279 8 380 2</td>
<td></td>
</tr>
<tr>
<td>Sultana 4/3/3.8 AC</td>
<td>22% CBL</td>
<td>320 m</td>
<td>12.5</td>
<td>342 353 5 316 2 342 267 8 380 2</td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL</td>
<td>350 m</td>
<td>12.5</td>
<td>432 386 5 480 4 432 338 8 342 4</td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL</td>
<td>350 m</td>
<td>12.5</td>
<td>471 386 5 480 4 471 368 8 342 4</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Shading indicates that the Maximum Span is limited by the Transition Span of the conductor.
2. Shading indicates that the Maximum Deviation Angle is limited by the deviation angle limit of the insulator.
11.8 Strain / Termination Urban TRIDENT 11/22kV Poles – Stay requirements for common applications

Cyclonic Area
For a 3 Phase Construction with subsidiary LV ABC and no allowance for Service Load
Foundations standard depth plus 150mm

Table 11-7 – Stay Requirements for Urban Strain/Termination Wood Pole (11/22kV, Cyclonic Area)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination</th>
<th>Preferred/Alternative</th>
<th>Aerial Stay</th>
<th>Maximum deviation angle unstayed</th>
<th>Maximum deviation angle bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>12.5</td>
<td>5</td>
<td>8.0</td>
<td>GS1/45 or GS1/60 or SS3</td>
<td>AS1</td>
<td></td>
<td>44°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>12.5</td>
<td>5</td>
<td>9.0</td>
<td>GS1/45 or GS1/60 or SS3</td>
<td>AS1</td>
<td></td>
<td>38°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>12.5</td>
<td>5</td>
<td>10.5</td>
<td>GS1/45 or GS1/60</td>
<td>AS1</td>
<td></td>
<td>31°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>12.5</td>
<td>8</td>
<td>12.9</td>
<td>GS1/45</td>
<td>AS1</td>
<td></td>
<td>47°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>12.5</td>
<td>8</td>
<td>16.8</td>
<td>GS1/45</td>
<td>AS1</td>
<td></td>
<td>36°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>12.5</td>
<td>8</td>
<td>19.2</td>
<td>GS2/45</td>
<td>AS2</td>
<td></td>
<td>30°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>12.5</td>
<td>8</td>
<td>22.6</td>
<td>GS2/45</td>
<td>AS2</td>
<td></td>
<td>25°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>12.5</td>
<td>8</td>
<td>28.1</td>
<td>GS3/45 or GS3/60</td>
<td>AS3</td>
<td></td>
<td>19°</td>
<td>45°+ GS3/45</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>14</td>
<td>8</td>
<td>26.7</td>
<td>GS2/45</td>
<td>AS2</td>
<td></td>
<td>18°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>14</td>
<td>8</td>
<td>30.6</td>
<td>GS3/45</td>
<td>AS3</td>
<td></td>
<td>15°</td>
<td>45°+ GS3/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>14</td>
<td>8</td>
<td>36.2</td>
<td>GS3/45</td>
<td>AS3</td>
<td></td>
<td>12°</td>
<td>45°+ GS3/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>80 m</td>
<td>14</td>
<td>8</td>
<td>42.5</td>
<td>GS3/45</td>
<td>AS3</td>
<td></td>
<td>10°</td>
<td>45°+ GS3/45</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.9 Strain / Termination Urban TRIDENT 11/22kV Poles – Stay requirements for common applications

Non-Cyclonic Area
For a 3 Phase Construction with subsidiary LV ABC and no allowance for Service Load
Foundations standard depth plus 150mm

Table 11-8 – Stay Requirements for Urban Strain/Termination Wood Pole (11/22kV, Non-cyclonic Area)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span (m)</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Preferred/Alternative</th>
<th>Aerial Stay</th>
<th>Maximum deviation angle unstayed</th>
<th>Maximum deviation angle bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL</td>
<td>40</td>
<td>12.5</td>
<td>5</td>
<td>6.2</td>
<td>GS1/45 or GS1/60 SS3</td>
<td>AS1</td>
<td>66°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40</td>
<td>12.5</td>
<td>5</td>
<td>6.9</td>
<td>GS1/45 or GS1/60 SS3</td>
<td>AS1</td>
<td>57°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL</td>
<td>40</td>
<td>12.5</td>
<td>5</td>
<td>8.1</td>
<td>GS1/45 or GS1/60 SS3</td>
<td>AS1</td>
<td>47°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40</td>
<td>12.5</td>
<td>8</td>
<td>10.0</td>
<td>GS1/45 or GS1/60 SS3</td>
<td>AS1</td>
<td>69°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>6% CBL</td>
<td>60</td>
<td>12.5</td>
<td>8</td>
<td>13.3</td>
<td>GS1/45</td>
<td>AS1</td>
<td>50°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>6% CBL</td>
<td>60</td>
<td>12.5</td>
<td>8</td>
<td>15.2</td>
<td>GS1/45</td>
<td>AS1</td>
<td>43°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>6% CBL</td>
<td>60</td>
<td>12.5</td>
<td>8</td>
<td>17.9</td>
<td>GS1/45</td>
<td>AS1</td>
<td>35°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>6% CBL</td>
<td>60</td>
<td>12.5</td>
<td>8</td>
<td>22.3</td>
<td>GS2/45</td>
<td>AS2</td>
<td>27°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>10% CBL</td>
<td>100</td>
<td>14</td>
<td>8</td>
<td>21.4</td>
<td>GS2/45</td>
<td>AS2</td>
<td>27°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>10% CBL</td>
<td>100</td>
<td>14</td>
<td>8</td>
<td>24.5</td>
<td>GS2/45</td>
<td>AS2</td>
<td>23°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>10% CBL</td>
<td>100</td>
<td>14</td>
<td>8</td>
<td>28.9</td>
<td>GS3/45 or GS3/60 SS3</td>
<td>AS2</td>
<td>18°</td>
<td>45°+ GS3/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>80</td>
<td>14</td>
<td>8</td>
<td>34.4</td>
<td>GS3/45</td>
<td>AS3</td>
<td>16°</td>
<td>45°+ GS3/45</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.10 Strain / Termination Urban 33kV Poles – Stay requirements for common applications

Cyclonic Area

For a 3 Phase Construction with subsidiary LV ABC and no allowance for Service Load

Foundations standard depth plus 150mm

Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Required crossarm for termination</th>
<th>Required crossarm for strain 0° deviation</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred / Alternative</th>
<th>Aerial Stay</th>
<th>Maximum deviation angle unstayed</th>
<th>Maximum deviation angle bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL 40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 5, 8.1</td>
<td>GS1/45 or GS1/60</td>
<td>AS1</td>
<td>44°</td>
<td>45°+ GS1/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL 40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 5, 9.1</td>
<td>GS1/45 or GS1/60</td>
<td>AS1</td>
<td>37°</td>
<td>45°+ GS1/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL 40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 5, 10.6</td>
<td>GS1/45 or GS1/60</td>
<td>AS1</td>
<td>31°</td>
<td>45°+ GS1/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL 40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 8, 13.0</td>
<td>GS1/45</td>
<td>AS1</td>
<td>47°</td>
<td>45°+ GS1/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>6% CBL 60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 8, 16.9</td>
<td>GS1/45</td>
<td>AS1</td>
<td>35°</td>
<td>45°+ GS1/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>6% CBL 60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 8, 19.4</td>
<td>GS2/45</td>
<td>AS2</td>
<td>30°</td>
<td>45°+ GS2/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>6% CBL 60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 8, 22.8</td>
<td>GS2/45</td>
<td>AS2</td>
<td>25°</td>
<td>45°+ GS2/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>6% CBL 60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5, 8, 28.3</td>
<td>GS3/45 or GS3/60</td>
<td>AS3</td>
<td>19°</td>
<td>45°+ GS3/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>10% CBL 100 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>14, 8, 27.0</td>
<td>GS2/45</td>
<td>AS2</td>
<td>18°</td>
<td>45°+ GS2/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>10% CBL 100 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>14, 8, 30.9</td>
<td>GS3/45</td>
<td>AS3</td>
<td>15°</td>
<td>45°+ GS3/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>10% CBL 100 m</td>
<td>S - 2700x175x125</td>
<td>S - 2700x150x100</td>
<td>14, 8, 36.4</td>
<td>GS3/45</td>
<td>AS3</td>
<td>12°</td>
<td>45°+ GS3/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL 80 m</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>14, 8, 42.8</td>
<td>GS3/45</td>
<td>AS3</td>
<td>10°</td>
<td>45°+ GS3/45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

The Limit State Conductor Termination Load listed is relative to the pole tip.
11.11 Strain / Termination Urban 33kV Poles – Stay requirements for common applications

Non-Cyclonic Area
For a 3 Phase Construction with subsidiary LV ABC and no allowance for Service Load
Foundations standard depth plus 150mm
Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

Table 11-10 – Stay Requirements for Urban Strain/Termination Wood Pole (33kV, Non-Cyclonic Area)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Required Crossarm for termination</th>
<th>Required Crossarm for strain 0° deviation</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred / Alternative</th>
<th>Aerial Stay</th>
<th>Maximum deviation angle unstayed</th>
<th>Maximum deviation angle bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>5</td>
<td>6.2</td>
<td>GS1/45 or GS1/60 or SS3</td>
<td>AS1</td>
<td>65°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>5</td>
<td>7.0</td>
<td>GS1/45 or GS1/60 or SS3</td>
<td>AS1</td>
<td>56°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>5</td>
<td>8.1</td>
<td>GS1/45 or GS1/60 or SS3</td>
<td>AS1</td>
<td>47°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>2.5% CBL</td>
<td>40 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>8</td>
<td>10.1</td>
<td>GS1/45 or GS1/60</td>
<td>AS1</td>
<td>69°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>8</td>
<td>13.4</td>
<td>GS1/45</td>
<td>AS1</td>
<td>50°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>8</td>
<td>15.3</td>
<td>GS1/45</td>
<td>AS1</td>
<td>43°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>8</td>
<td>18.0</td>
<td>GS1/45</td>
<td>AS1</td>
<td>35°</td>
<td>45°+ GS1/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>6% CBL</td>
<td>60 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>8</td>
<td>22.5</td>
<td>GS2/45 or GS3/45</td>
<td>AS2</td>
<td>27°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>14</td>
<td>8</td>
<td>21.5</td>
<td>GS2/45</td>
<td>AS2</td>
<td>27°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>14</td>
<td>8</td>
<td>24.7</td>
<td>GS2/45</td>
<td>AS2</td>
<td>23°</td>
<td>45°+ GS2/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>10% CBL</td>
<td>100 m</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>14</td>
<td>8</td>
<td>29.1</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
<td>18°</td>
<td>45°+ GS3/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>10% CBL</td>
<td>80 m</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>14</td>
<td>8</td>
<td>34.7</td>
<td>GS3/45</td>
<td>AS3</td>
<td>15°</td>
<td>45°+ GS3/45</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.12 Strain / Termination Rural 11kV Poles – Stay requirements for common applications

Cyclonic Area
For a 3 Phase Construction with no LV Conductor on Pole
Foundations standard depth plus 150mm
Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Required crossarm for termination</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred/alternative</th>
<th>Aerial stay</th>
<th>Maximum deviation angle with bisect stay (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>S - 2400x150x100</td>
<td>S - 2400x150x100</td>
<td>12.5</td>
<td>5</td>
<td>16.1</td>
<td>GS1/45</td>
<td>AS1</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>S - 2400x150x100</td>
<td>S - 2400x150x100</td>
<td>12.5</td>
<td>5</td>
<td>24.2</td>
<td>GS2/45</td>
<td>AS1</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>5</td>
<td>35.6</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>D - 2400x175x125</td>
<td>D - 2400x150x100</td>
<td>12.5</td>
<td>5</td>
<td>50.7</td>
<td>GS3/45</td>
<td>AS3</td>
</tr>
<tr>
<td>Chlorine 7/2.5 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>S - 2400x150x100</td>
<td>S - 2400x150x100</td>
<td>12.5</td>
<td>5</td>
<td>16.6</td>
<td>GS1/45</td>
<td>AS1</td>
</tr>
<tr>
<td>Helium 7/3.75 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>8</td>
<td>35.9</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>D - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>8</td>
<td>50.7</td>
<td>GS3/45</td>
<td>AS3</td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>8</td>
<td>30.3</td>
<td>GS2/45</td>
<td>AS2</td>
</tr>
<tr>
<td>Banana 6/1/3.75 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>8</td>
<td>42.6</td>
<td>GS3/45</td>
<td>AS3</td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>8</td>
<td>37.4</td>
<td>GS3/45</td>
<td>AS2</td>
</tr>
<tr>
<td>Sultana 4/3/3.0ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>8</td>
<td>44.5</td>
<td>GS3/45</td>
<td>AS3</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL</td>
<td>350 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>5</td>
<td>33.3</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL</td>
<td>350 m</td>
<td>S - 2400x175x125</td>
<td>S - 2400x175x125</td>
<td>12.5</td>
<td>5</td>
<td>32.5</td>
<td>GS2/45</td>
<td>AS2</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.13 Strain / Termination Rural 11kV Poles – Stay requirements for common applications

Non-Cyclonic Area
For a 3 Phase Construction with no LV Conductor on Pole
Foundations standard depth plus 150mm
Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

Table 11-12 – Stay Requirements for Rural Strain/Termination Wood Pole (11kV, Non-Cyclonic Area)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Required crossarm for termination</th>
<th>Required crossarm for strain 0° deviation</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Pole Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred/alternative</th>
<th>Aerial stay</th>
<th>Maximum deviation angle with bisect stay (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150 m S - 2400x150x100</td>
<td>12.5 14/15.5 5/5</td>
<td>16.1 16.1</td>
<td>GS1/45 AS1</td>
<td>GS1/45 AS1</td>
<td>AS1</td>
<td>71</td>
<td>GS1/45</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m S - 2400x150x100</td>
<td>12.3 14/15.5 5/5</td>
<td>21.6 21.7</td>
<td>GS1/45 AS1</td>
<td>GS1/45 AS1</td>
<td>AS1</td>
<td>70</td>
<td>GS1/45</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>29.4 29.6</td>
<td>GS2/45 AS1</td>
<td>GS2/45 AS1</td>
<td>AS1</td>
<td>48</td>
<td>GS2/45</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>42.2 42.4</td>
<td>GS3/45 AS2</td>
<td>GS3/45 AS2</td>
<td>AS2</td>
<td>56</td>
<td>GS3/45</td>
</tr>
<tr>
<td>Chlorine 7/2.5 AAAC</td>
<td>20% CBL</td>
<td>250 m S - 2400x150x100</td>
<td>12.5 14/15.5 5/5</td>
<td>16.6 16.7</td>
<td>GS1/45 AS1</td>
<td>GS1/45 AS1</td>
<td>AS1</td>
<td>62</td>
<td>GS1/45</td>
</tr>
<tr>
<td>Helium 7/3.75 AAAC</td>
<td>20% CBL</td>
<td>250 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>31.0 31.1</td>
<td>GS2/45 AS2</td>
<td>GS2/45 AS2</td>
<td>AS2</td>
<td>62</td>
<td>GS2/45</td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL</td>
<td>250 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>41.9 42.0</td>
<td>GS3/45 AS3</td>
<td>GS3/45 AS3</td>
<td>AS2</td>
<td>62</td>
<td>GS3/45</td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>26.3 26.4</td>
<td>GS2/45 AS3</td>
<td>GS2/45 AS3</td>
<td>AS1</td>
<td>62</td>
<td>GS2/45</td>
</tr>
<tr>
<td>Banana 6/1/3.75 ACSR</td>
<td>22% CBL</td>
<td>250 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>35.6 35.8</td>
<td>GS3/45 or GS3/60 AS4</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
<td>62</td>
<td>GS3/45</td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL</td>
<td>320 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>31.8 31.9</td>
<td>GS2/45 AS4</td>
<td>GS2/45 AS4</td>
<td>AS2</td>
<td>79</td>
<td>GS2/45</td>
</tr>
<tr>
<td>Sultana 4/3/3.0 ACSR</td>
<td>22% CBL</td>
<td>320 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>37.6 37.8</td>
<td>GS3/45 AS3</td>
<td>GS3/45 AS3</td>
<td>AS2</td>
<td>74</td>
<td>GS3/45</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL</td>
<td>350 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>28.7 28.9</td>
<td>GS2/45 AS1</td>
<td>GS2/45 AS1</td>
<td>AS1</td>
<td>59</td>
<td>GS2/45</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL</td>
<td>350 m S - 2400x175x125</td>
<td>12.5 14/15.5 5/5</td>
<td>28.2 28.3</td>
<td>GS2/45 AS1</td>
<td>GS2/45 AS1</td>
<td>AS1</td>
<td>59</td>
<td>GS2/45</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.14 Strain / Termination Rural 22kV Poles – Stay requirements for common applications

Cyclonic Area

For a 3 Phase Construction with no LV Conductor on Pole
Foundations standard depth plus 150mm
Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

Table 11-13 – Stay Requirements for Rural Strain/Termination Wood Pole (22kV, Cyclonic Area)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Required crossarm for termination</th>
<th>Required crossarm for strain 0° deviation</th>
<th>Standard Pole HT (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination</th>
<th>Preferred/alternative</th>
<th>Aerial stay</th>
<th>Maximum deviation angle - w ith bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL 150 m</td>
<td>S - 2700x150x100</td>
<td>12.5 14</td>
<td>5</td>
<td>16.1</td>
<td>GS1/45</td>
<td>AS1</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL 150 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>5</td>
<td>24.2</td>
<td>GS2/45</td>
<td>AS1</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL 150 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>35.6</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL 150 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>50.7</td>
<td>GS3/45</td>
<td>AS3</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine 7/2.5 AAAC</td>
<td>20% CBL 250 m</td>
<td>S - 2700x150x100</td>
<td>12.5 14</td>
<td>5</td>
<td>16.6</td>
<td>GS1/45</td>
<td>AS1</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium 7/4.75 AAAC</td>
<td>20% CBL 250 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>35.9</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL 250 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>50.6</td>
<td>GS3/45</td>
<td>AS3</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple 6/1.3 ACSR</td>
<td>22% CBL 250 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>30.3</td>
<td>GS2/45</td>
<td>AS2</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana 6/1.35 ACSR</td>
<td>22% CBL 250 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>42.6</td>
<td>GS3/45</td>
<td>AS3</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL 320 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>37.4</td>
<td>GS3/45</td>
<td>AS2</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sultana 4/3/3.6ACSR</td>
<td>22% CBL 320 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14</td>
<td>8</td>
<td>44.5</td>
<td>GS3/45</td>
<td>AS3</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL 350 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>5</td>
<td>33.3</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL 350 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14</td>
<td>5</td>
<td>32.5</td>
<td>GS3/45 or GS3/60</td>
<td>AS2</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.15 Strain / Termination Rural 22kV Poles – Stay requirements for common applications

Non-Cyclonic Area

For a 3 Phase Construction with no LV Conductor on Pole

Foundations standard depth plus 150mm

Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

Table 11-14 – Stay Requirements for Rural Strain/Termination Wood Pole (22kV, Non-Cyclonic Area)

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Required crossarm for strain 0° deviation</th>
<th>Required crossarm for termination</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred/alternative</th>
<th>Aerial stay</th>
<th>Maximum deviation angle with bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>S - 2700x150x100</td>
<td></td>
<td>12.5 14 5 5</td>
<td>16.1 16.1</td>
<td>GS1/45 AS1 71</td>
<td>AS1</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>21.6 21.7</td>
<td>GS1/45 AS1 48</td>
<td>AS1</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>29.4 29.6</td>
<td>GS2/45 AS1 56</td>
<td>AS1</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150 m</td>
<td>D - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>42.2 42.4</td>
<td>GS3/45 AS2 65</td>
<td>AS2</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Chlorine 7/2.5 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>S - 2700x150x100</td>
<td></td>
<td>12.5 14 5 5</td>
<td>16.6 16.7</td>
<td>GS1/45 AS1 62</td>
<td>AS1</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Helium 7/3.75 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>31.0 31.2</td>
<td>GS2/45 AS2 49</td>
<td>AS2</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL</td>
<td>250 m</td>
<td>D - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>41.9 42.0</td>
<td>GS3/45 AS3 62</td>
<td>AS2</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>26.3 26.4</td>
<td>GS2/45 AS1 63</td>
<td>AS1</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Banana 6/1/3.75 ACSR</td>
<td>22% CBL</td>
<td>250 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>35.6 35.8</td>
<td>GS3/45 or GS3/60 79</td>
<td>AS2</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>31.8 31.9</td>
<td>GS2/45 AS2 50</td>
<td>AS2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Sultana 4/3/3.0 ACSR</td>
<td>22% CBL</td>
<td>320 m</td>
<td>D - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>37.6 37.8</td>
<td>GS3/45 AS3 74</td>
<td>AS2</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL</td>
<td>350 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>28.7 28.9</td>
<td>GS2/45 AS1 58</td>
<td>AS1</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL</td>
<td>350 m</td>
<td>S - 2700x175x125</td>
<td></td>
<td>12.5 14 5 5</td>
<td>28.2 28.3</td>
<td>GS2/45 AS1 58</td>
<td>AS1</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Note:

The Limit State Conductor Termination Load listed is relative to the pole tip.
11.16 Strain / Termination Rural 33kV Poles – Stay requirements for common applications

Cyclonic Area

For a 3 Phase Construction with no LV Conductor on Pole

Foundations standard depth plus 150mm

Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span</th>
<th>Required crossarm for termination (m)</th>
<th>Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred/alternative</th>
<th>Aerial stay</th>
<th>Maximum deviation angle with bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL 150 m</td>
<td>S - 2700x150x100</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>16.1 16.1 GS1/45 GS1/45</td>
<td>64</td>
<td>AS1</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL 150 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>24.2 24.3 GS2/45 GS2/45</td>
<td>68</td>
<td>AS1</td>
<td>68</td>
<td>3</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL 150 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>35.6 35.8 GS3/45 or GS3/60 GS3/45 or GS3/60</td>
<td>79</td>
<td>AS2</td>
<td>79</td>
<td>3</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL 150 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14 8</td>
<td>8</td>
<td>50.7 50.9 GS3/45 GS3/45</td>
<td>49</td>
<td>AS3</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>Chlorine 7/2.5 AAAC</td>
<td>20% CBL 250 m</td>
<td>S - 2700x150x100</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>16.8 16.7 GS1/45 GS1/45</td>
<td>54</td>
<td>AS1</td>
<td>54</td>
<td>5</td>
</tr>
<tr>
<td>Helium 7/3.75 AAAC</td>
<td>20% CBL 250 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>35.8 35.9 GS3/45 or GS3/60 GS3/45 or GS3/60</td>
<td>73</td>
<td>AS2</td>
<td>73</td>
<td>5</td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL 250 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14 8</td>
<td>8</td>
<td>50.6 50.9 GS3/45 GS3/45</td>
<td>46</td>
<td>AS3</td>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL 250 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 8</td>
<td>8</td>
<td>30.3 30.4 GS2/45 GS2/45</td>
<td>48</td>
<td>AS2</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>Banana 6/1/3.75 ACSR</td>
<td>22% CBL 250 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14 8</td>
<td>8</td>
<td>42.8 42.9 GS3/45 GS3/45</td>
<td>47</td>
<td>AS3</td>
<td>47</td>
<td>7</td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL 320 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 8</td>
<td>8</td>
<td>37.4 37.6 GS3/45 GS3/45</td>
<td>59</td>
<td>AS3</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>Sultana 4/3/0ACS/</td>
<td>22% CBL 320 m</td>
<td>D - 2700x175x125</td>
<td>12.5 14 8</td>
<td>8</td>
<td>37.4 37.6 GS3/45 GS3/45</td>
<td>59</td>
<td>AS3</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL 350 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>44.4 44.6 GS3/45 GS3/45</td>
<td>86</td>
<td>AS2</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL 350 m</td>
<td>S - 2700x175x125</td>
<td>12.5 14 5 8</td>
<td>5</td>
<td>32.5 32.6 GS3/45 or GS3/60 GS3/45 or GS3/60</td>
<td>88</td>
<td>AS2</td>
<td>88</td>
<td>8</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
11.17 Strain / Termination Rural 33kV Poles – Stay requirements for common applications

Non-Cyclonic Area

For a 3 Phase Construction with no LV Conductor on Pole

Foundations standard depth plus 150mm

Crossarm size based on weight span of 70% of ruling span for termination and 110% of ruling span for strain

<table>
<thead>
<tr>
<th>Conductor Type</th>
<th>Stringing Condition</th>
<th>Assumed Ruling Span (m)</th>
<th>Required crossarm for termination</th>
<th>Standard Pole Ht (m)</th>
<th>Pole Strength Tip Rating (kN)</th>
<th>Limit State Conductor Termination Load (kN)</th>
<th>Required stay for termination Preferred/alternative</th>
<th>Aerial stay</th>
<th>Maximum deviation angle with bisect stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra 7/3.00 AAC</td>
<td>20% CBL</td>
<td>150</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>5</td>
<td>16.1</td>
<td>GS1/45</td>
<td>71</td>
</tr>
<tr>
<td>Mars 7/3.75 AAC</td>
<td>20% CBL</td>
<td>150</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>21.6</td>
<td>GS1/45</td>
<td>70</td>
</tr>
<tr>
<td>Moon 7/4.75 AAC</td>
<td>20% CBL</td>
<td>150</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>29.4</td>
<td>GS2/45</td>
<td>48</td>
</tr>
<tr>
<td>Pluto 19/3.75 AAC</td>
<td>20% CBL</td>
<td>150</td>
<td>D - 2700x175x125</td>
<td>D - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>42.2</td>
<td>GS3/45</td>
<td>65</td>
</tr>
<tr>
<td>Chlorine 7/2.5 AAAC</td>
<td>20% CBL</td>
<td>250</td>
<td>S - 2700x150x100</td>
<td>S - 2700x150x100</td>
<td>12.5</td>
<td>5</td>
<td>16.8</td>
<td>GS1/45</td>
<td>62</td>
</tr>
<tr>
<td>Helium 7/3.75 AAAC</td>
<td>20% CBL</td>
<td>250</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>16.7</td>
<td>GS1/45</td>
<td>61</td>
</tr>
<tr>
<td>Iodine 7/4.75 AAAC</td>
<td>20% CBL</td>
<td>250</td>
<td>D - 2700x175x125</td>
<td>D - 2700x175x125</td>
<td>12.5</td>
<td>8</td>
<td>41.9</td>
<td>GS3/45</td>
<td>62</td>
</tr>
<tr>
<td>Apple 6/1/3.0 ACSR</td>
<td>22% CBL</td>
<td>250</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>26.3</td>
<td>GS2/45</td>
<td>62</td>
</tr>
<tr>
<td>Banana 6/1/3.75 ACSR</td>
<td>22% CBL</td>
<td>250</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>26.5</td>
<td>GS2/45</td>
<td>62</td>
</tr>
<tr>
<td>Raisin 3/4/2.5 ACSR</td>
<td>22% CBL</td>
<td>320</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>31.8</td>
<td>GS2/45</td>
<td>79</td>
</tr>
<tr>
<td>Sultana 4/3/3.0 ACSR</td>
<td>22% CBL</td>
<td>320</td>
<td>D - 2700x175x125</td>
<td>D - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>37.8</td>
<td>GS3/45</td>
<td>79</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>25% CBL</td>
<td>350</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>28.7</td>
<td>GS2/45</td>
<td>58</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>25% CBL</td>
<td>350</td>
<td>S - 2700x175x125</td>
<td>S - 2700x175x125</td>
<td>12.5</td>
<td>5</td>
<td>28.3</td>
<td>GS2/45</td>
<td>59</td>
</tr>
</tbody>
</table>

Note:
The Limit State Conductor Termination Load listed is relative to the pole tip.
12. LAYOUT CLEARANCES

12.1 Conductor Heights

Figure 12-1 – 11/22/33kV Construction Conductor Heights
Figure 12-2 – 11/22/33kV Construction Conductor Heights continued.

Notes:
1. Recommended setting depth based on one tenth of the pole height plus 0.75m
2. Additional depth may be required for poor soils
12.2 Minimum Clearances – Distribution and Sub-transmission

NOTES:-

1. Clearances are a minimum to which a conductor may sag or swing under the following conditions:
 (a) maximum conductor design temperature in still air (maximum sag condition).
 (b) conductor temperature of 35°C with 500 pa wind pressure on the conductor (maximum horizontal swing condition).
 (c) conductor temperature of 0°C in still air (minimum sag condition).
 (d) these are clearances for layout purposes and in some cases include an additional margin above regulation for layout, survey and construction inaccuracies. Refer to Overhead Construction Manual-Construction practices Dwg 1051.

2. Either the vertical clearance or the horizontal clearance specified must be maintained. Also, in the zone outside the vertical alignment of the building, road cutting, embankments and similar places, either the horizontal clearance from the vertical alignment or the vertical clearance from the horizontal level on which a person may stand shall be maintained.

3. This item does not apply if code ‘d’ or ‘e’ applies.

4. Lights on roads:
 No part of the light or its fittings or its support to a pole is to be less than 5.5m above the carriageway of a road or 4.6 elsewhere.

5. Control cables and stay wires shall have the same clearances as bare L.V.
 A cable temperature of 60°C in still air shall apply in calculating clearances.

6. The clearance above sugar cane applies to both the green harvested and burnt cane areas and should be maintained along headlands as well as over cane. When possible, a steel cored conductor should be used to minimise loss of conductor height due to canefire heating.

7. The clearance for bin unloading areas is only necessary in specific locations where the activity may occur. Avoidance of these areas is the preferred option.

8. Conductors normally in the road reserve shall not cross real property boundaries under blow out conditions (35°C and wind pressure 500 Pa) unless approved by Ergon Line Standards Manager.

REFERENCE:
Electricity Safety Regulation 2013, Sections 207, 208, and Schedule 4.
Table 12-1 – Minimum Clearances – Distribution and Sub-Transmission

<table>
<thead>
<tr>
<th>CODE</th>
<th>LOCATION</th>
<th>DIRECTION</th>
<th>LOW VOLTAGE</th>
<th>HIGH VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ABC</td>
<td>BARE</td>
</tr>
<tr>
<td>A</td>
<td>Roads: carriageway crossing (Note 1)</td>
<td>Vertically</td>
<td>5.8m</td>
<td>5.8m</td>
</tr>
<tr>
<td>B</td>
<td>Roads: other locations (Note 1)</td>
<td>Vertically</td>
<td>5.8m</td>
<td>5.8m</td>
</tr>
<tr>
<td></td>
<td>High load corridor routes (Note 1)</td>
<td>Vertically</td>
<td>7.0m</td>
<td>7.0m</td>
</tr>
<tr>
<td>C</td>
<td>Other than roads (Note 1 & 3)</td>
<td>Vertically</td>
<td>5.8m</td>
<td>5.8m</td>
</tr>
<tr>
<td>D</td>
<td>Extremely steep or swampy terrain that cannot be crossed by traffic or mobile machinery (Note 1)</td>
<td>Vertically</td>
<td>4.8m</td>
<td>4.8m</td>
</tr>
<tr>
<td>E</td>
<td>Road cuttings, embankments etc. (Note 1)</td>
<td>Horizontally</td>
<td>1.5m</td>
<td>1.5m</td>
</tr>
<tr>
<td></td>
<td>Over or adjacent cultivation (Note 8)</td>
<td>Vertically</td>
<td>8.0m</td>
<td>8.0m</td>
</tr>
<tr>
<td></td>
<td>Over or adjacent to cane (Note 6 & 8)</td>
<td>Vertically</td>
<td>n/a</td>
<td>8.0m</td>
</tr>
<tr>
<td></td>
<td>Sugar cane bin unloading areas (Note 7 & 8)</td>
<td>Vertically</td>
<td>n/a</td>
<td>12.5m</td>
</tr>
<tr>
<td></td>
<td>Waterways - Recreational/navigable</td>
<td>Vertically</td>
<td>As agreed with appropriate controlling body / AS6947</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterways & other areas subject to flooding - Above flood (Note 9)</td>
<td>Vertically</td>
<td>4.5m</td>
<td>4.5m</td>
</tr>
</tbody>
</table>

CLEARANCES FROM STRUCTURES, BUILDINGS AND BOUNDARIES

<table>
<thead>
<tr>
<th>CODE</th>
<th>LOCATION</th>
<th>DIRECTION</th>
<th>LOW VOLTAGE</th>
<th>HIGH VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unroofed terraces, balconies, sun decks, paved areas and similar areas subject to pedestrian traffic only, that have a handrail or wall surrounding the area and on which a person may stand. Easement Boundaries. (Note 1 and 2)</td>
<td>Vertically</td>
<td>2.7m</td>
<td>3.7m</td>
</tr>
<tr>
<td></td>
<td>Roofs or similar structures not used for traffic or resort, but on which a person may stand - includes parapets (Note 1 and 2)</td>
<td>Horizontally</td>
<td>1.2m</td>
<td>1.5m</td>
</tr>
<tr>
<td>G</td>
<td>Covered balconies, open verandahs, opening windows (Note 1)</td>
<td>Vertically</td>
<td>2.7m</td>
<td>3.7m</td>
</tr>
<tr>
<td>I</td>
<td>Blank walls and windows which cannot be opened. Circuit separation (Note 1)</td>
<td>Horizontally</td>
<td>0.9m</td>
<td>1.5m</td>
</tr>
<tr>
<td>J</td>
<td>Other structures not normally accessible to persons eg. t.v. aerials, clothes hoists, billboard signs etc. (Note 1 & 2)</td>
<td>In any direction</td>
<td>1.2m</td>
<td>1.5m</td>
</tr>
<tr>
<td></td>
<td>Real property boundaries (Note 1b)</td>
<td>Horizontally</td>
<td>0.0m</td>
<td>0.0m</td>
</tr>
</tbody>
</table>
12.3 Minimum Clearances – Low Voltage Service (From Ground and Structures)

NOTES:

1. Clearances are a minimum to which a conductor may sag or swing under the following conditions:
 - (a) Maximum conductor temperature of 80°C in still air (maximum sag condition).
 - (b) Conductor temperature of 35°C with 500Pa wind pressure on the conductor (maximum horizontal swing condition).
 - (c) Conductor temperature of 0°C in still air (minimum sag condition).
 - (d) These are clearances for layout purposes and in some cases include an additional margin above regulation for layout, survey and construction inaccuracies. Refer to Overhead Construction Manual-Construction practices Dwg 1268 for regulation clearances.

2. Either the vertical clearance or the horizontal clearance specified must be maintained. Also, in the zone outside the vertical alignment of the building or structure, either the horizontal clearance from the vertical alignment or the vertical clearance above the horizontal level on which a person may stand shall be maintained.
 e.g. minimum clearance of service conductor from a roof when service is not attached to roof is given by 'H'.

3. The clearance specified is applicable when the service line is not attached to the part of the building described.

4. If point of service attachment (including metal bracket or riser supporting it) is less than 25mm from nearest metalwork, effectively earth by bonding to the service neutral.
 Point of service attachment shall not be readily accessible to persons.

REFERENCE:
Electricity Safety Regulation 2013, Sections 207, 208, and Schedule 5.

This drawing to be read in conjunction with sheet 2.

Figure 12-3 – Notes for Table 12-2 – Minimum Clearances – Low Voltage Service (From Ground and Structures)
Table 12-2 – Minimum Clearances – Low Voltage Service (From Ground and Structures)

<table>
<thead>
<tr>
<th>CODE</th>
<th>LOCATION</th>
<th>DIRECTION</th>
<th>INSULATED SERVICE</th>
<th>APPLICABLE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLEARANCES FROM GROUND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Roads: centre line of carriageway crossing</td>
<td>Vertically</td>
<td>5.8m</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Roads: at kerb line or future kerb line</td>
<td>Vertically</td>
<td>4.9m</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Roads: at fence alignment</td>
<td>Vertically</td>
<td>3.7m</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Other than roads: private driveways and areas including elevated areas used by vehicles.</td>
<td>Vertically</td>
<td>4.5m</td>
<td>Note 1</td>
</tr>
<tr>
<td>E</td>
<td>Other than roads: areas not normally used by vehicles.</td>
<td>Vertically</td>
<td>2.7m</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Road cuttings, embankments and the like.</td>
<td>Horizontally</td>
<td>1.5m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLEARANCES FROM STRUCTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Unroofed terraces, balconies, sun decks, paved areas and similar areas subject to pedestrian traffic only, that have a handrail or wall surrounding the area and on which a person may stand.</td>
<td>Vertically below</td>
<td>1.2m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertically above</td>
<td>2.4m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontally</td>
<td>0.9m</td>
<td>NOTE 1, 2 & 3</td>
</tr>
<tr>
<td>H</td>
<td>Roofs or similar structures not used for traffic or resort, but on which a person may stand – includes parapets.</td>
<td>Vertically</td>
<td>0.6m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontally</td>
<td>0.2m</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Covered balconies, roofed open verandahs, opening windows</td>
<td>In any direction</td>
<td>1.2m</td>
<td>Note 1</td>
</tr>
<tr>
<td>J</td>
<td>Blank walls and windows which cannot be opened.</td>
<td>Horizontally</td>
<td>0.2m</td>
<td>Note 1 & 3</td>
</tr>
<tr>
<td>K</td>
<td>Other structures not normally accessible to persons eg. t.v. aerials, clothes hoists, etc.</td>
<td>In any direction</td>
<td>1.2m</td>
<td></td>
</tr>
</tbody>
</table>
12.4 Minimum Separation of Conductors of Different Circuits

12.4.1 Circuits on a Common Support ‘x’

Figure 12-4 – Circuits on a Common Support ‘x’

Table 12-3 – Minimum Clearances for Circuits on a Common Support ‘x’

<table>
<thead>
<tr>
<th>Voltage of Conductor of Lower Circuit</th>
<th>Voltage of Conductor of Circuit Immediately Above</th>
<th>Minimum Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.V.</td>
<td>L.V.</td>
<td>0.5m</td>
</tr>
<tr>
<td>L.V.</td>
<td>11/22/33kV</td>
<td>2.0m</td>
</tr>
<tr>
<td>L.V.</td>
<td>S.W.E.R.</td>
<td>2.0m</td>
</tr>
<tr>
<td>L.V.</td>
<td>66kV</td>
<td>2.0m</td>
</tr>
<tr>
<td>S.W.E.R.</td>
<td>11/22/33kV</td>
<td>1.2m</td>
</tr>
<tr>
<td>S.W.E.R.</td>
<td>66kV</td>
<td>1.8m</td>
</tr>
<tr>
<td>11/22/33kV</td>
<td>11/22/33kV</td>
<td>1.2m</td>
</tr>
<tr>
<td>11/22/33kV</td>
<td>66kV</td>
<td>1.8m</td>
</tr>
</tbody>
</table>

Notes:
1. Refer Section 12.4.2 for minimum conductor separations for circuit not attached to common support
2. Refer Section 12.5 for criteria for intercircuit separations at mid span
3. Clearances apply to bare of covered conductors
4. To allow for live line work new constructions should be constructed with 2.0 meters clearance between the lowest HV circuit and the highest LV circuit. Refer sheet 3
5. All separations are vertical distances measured at the points of support applicable
12.4.2 Circuits Non-Attached to Common Support ‘y’ (Includes Crossings)

Figure 12-5 – Circuits Non-Attached to Common Support ‘y’

Table 12-4 – Minimum Clearances for Circuits Non-Attached to Common Support ‘y’

<table>
<thead>
<tr>
<th>Voltage of Conductor of Lower Circuit</th>
<th>Voltage of Conductor of Circuit Immediately Above</th>
<th>Minimum Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.V.</td>
<td>L.V.</td>
<td>1.2m</td>
</tr>
<tr>
<td>L.V.</td>
<td>11/22/33kV</td>
<td>1.5m</td>
</tr>
<tr>
<td>L.V.</td>
<td>S.W.E.R.</td>
<td>1.5m</td>
</tr>
<tr>
<td>L.V.</td>
<td>66kV</td>
<td>2.1m</td>
</tr>
<tr>
<td>S.W.E.R.</td>
<td>11/22/33kV</td>
<td>1.5m</td>
</tr>
<tr>
<td>S.W.E.R.</td>
<td>66kV</td>
<td>2.1m</td>
</tr>
<tr>
<td>11/22/33kV</td>
<td>11/22/33kV</td>
<td>1.5m</td>
</tr>
<tr>
<td>11/22/33kV</td>
<td>66kV</td>
<td>2.1m</td>
</tr>
<tr>
<td>11/22/33kV</td>
<td>132kV</td>
<td>3.0m</td>
</tr>
<tr>
<td>11/22/33kV</td>
<td>275kV</td>
<td>4.6m</td>
</tr>
<tr>
<td>S.W.E.R.</td>
<td>132kV</td>
<td>3.0m</td>
</tr>
<tr>
<td>S.W.E.R.</td>
<td>275kV</td>
<td>4.6m</td>
</tr>
</tbody>
</table>

Notes:
1. Standard maximum design temperature is 75°C but may vary on some feeders
2. Upper circuit maximum design temperature must be verified prior to design of lower circuits
3. For undercrossings the separation should be the greater of the separations specified in the above table or dimension ‘A’ as calculated by the double envelope method
4. Clearances apply to bare or covered conductors
12.5 Criteria for Intercircuit Clearances

12.5.1 Clearance over Public Lighting

Figure 12-6 – Clearance over Public Lighting

Notes:
1. Standard Maximum Design temperature is 75°C but may vary on some feeders
2. Upper circuit Maximum Design Temperature must be verified prior to design of lower circuits
3. Clearances apply to bare or covered conductors

12.5.2 Intercircuit Clearances at Midspan

Figure 12-7 – Intercircuit Clearances at Midspan

Notes:
1. Standard Maximum Design temperature is 75°C but may vary on some feeders
2. Upper circuit Maximum Design Temperature must be verified prior to design of lower circuits
3. Clearances apply to bare or covered conductors
12.5.3 Minimum Design Clearance at Pole

(This clearance allows for live line work)

LOWEST UPPER CIRCUIT CONDUCTOR (Up to 33kV)

33kV to LV (bare or insulated)
22kV to LV (bare or insulated)
11kV to LV (bare or insulated)

2.0 m

HIGHEST LOWER CIRCUIT CONDUCTOR (LV)

Notes:
1. Standard Maximum Design temperature is 75°C but may vary on some feeders
2. Upper circuit Maximum Design Temperature must be verified prior to design of lower circuits
3. Clearances apply to bare or covered conductors

Figure 12-8 – Minimum Design Clearance at Pole
12.6 Crossarm Separation for Same Circuit

Figure 12-9 – Crossarm Separation for a HV Circuit

Top arm: 11/22/33kV Intermediate/Strain/Termination
Lower arm: 11/22/33kV Intermediate/Strain/Termination

Top arm: 11/22kV Trident-Intermediate/Strain/Termination
Lower arm: 11/22kV Trident-Intermediate/Strain/Termination

Stay position
Figure 12-10 – Crossarm Separation for a LV Circuit
12.7 Crossarm Separation for Different Circuits

Figure 12-11 – Crossarm Separation for Different HV Circuits
H.V./L.V. CROSSARM/CIRCUIT SEPARATION

Top circuit: 11/22/33kV/S.W.E.R. Intermediate/Strain/Termination
Different circuit: L.V./Intermediate/Strain/Termination

Figure 12-12 – Crossarm Separation for Different HV and LV Circuits
13. AGREEMENTS

13.1 QR Design requirements

13.1.1 Span Lengths
The length of the crossing span shall be kept to the minimum reasonably required to satisfy other requirements. All poles shall be located outside the boundaries of the railway property except where poles are required within such boundaries in order to achieve an acceptable length of crossing span.

13.1.2 Pole Location
Poles near railway tracks are to be positioned such that in the event of a failure, they do not fall within two metres of a railway track. If this is not practical, the pole must be stayed away from the track or a special design used to eliminate the hazard.

13.1.3 Coach Screws
Coach screws shall not be used for the attachment of insulators on brackets supporting conductors crossing railway tracks.

13.1.4 Mid Span Joints
No joints are allowed in the crossing span. Joints in adjacent spans are allowed.

13.1.5 Electrical Connections
No connections are to be made to conductors in tension over railway land. All connections must be made to conductor tails.

13.1.6 Insulation
Pin insulators shall not be used on any conductors in tension crossing railway tracks.

13.1.7 Crossing Angle
The crossing span angle to the track shall not be less than 45° unless by specific agreement.

13.1.8 Low Voltage (650V and below) Lines – Stays and Overhead Earth Wires
(i) No part of LV 650V and below lines shall be constructed over railway tracks in the electrified area of the railway system.
(ii) Stays and overhead earth wires which cross railway tracks as part of an 11kV or higher voltage line are excluded from the provisions of (i) above.

13.1.9 Crossings
(i) Ergon lines shall cross above low voltage electrical lines, telegraph telephone signal, and similar lines of the railway.
(ii) All of the group of Ergon crossing lines shall cross above the railway lines where the highest voltage of the Ergon crossing group is greater than the highest railways high voltage line.
(iii) In electrified rail areas, all Ergon HV lines will cross above railway traction wiring.

13.1.10 Clearances
Clearance over Railway tracks and lines shall be as given in the table on the following page.

13.1.11 Pole raisers
Pole raisers shall not be used to support conductors other than overhead earthwires in the crossing span and then only when the support has been specifically designed for the purpose.
13.1.12 Intermediate Structures

Use of intermediate structure types on one side of the crossing is acceptable provided that the design allows for the reduced clearances provided for under short term broken conductor contingency in an adjacent span are met. In order for this design to be applied, account must be taken of the following factors:

- pole strength and flexibility when broken wire loads are applied
- insulator strength and conductor grip strength
- the effect of impact loads under broken wire conditions
- construction practicalities.

Table 13-1 – Vertical Clearances for Ergon Conductors and Railway Equipment

<table>
<thead>
<tr>
<th>RAILWAY EQUIPMENT</th>
<th>VERTICAL CLEARANCE (METERS)</th>
<th>ERGON CONDUCTORS</th>
<th>SHORT TIME EMERGENCY e.g. BROKEN CONDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PILOT WIRES, STAYS, E/WIRE</td>
<td>S/Light & LV</td>
<td>OVER 650V up to 33kV</td>
</tr>
<tr>
<td>Railway Tracks</td>
<td>6.7</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Electrical Traction Wiring and Supports</td>
<td>3.0</td>
<td>Underground</td>
<td>3.0</td>
</tr>
<tr>
<td>Telephone and Signal Lines, Stays and E</td>
<td>0.6</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Excluding electric traction wiring</td>
<td>1.2</td>
<td>1.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

13.1.13 Procedure to be Followed

1. Written notice of works to be carried out, including plans and specifications must be forwarded to Queensland Rail for agreement. The plan must specify the railway kilometre distance and the nearest station. Queensland Rail has 2 weeks in which to reply and may impose terms and conditions on the work.
2. When Ergon Energy has been notified in writing of this approval, at least 2 weeks notice must be given to Queensland Rail before work commences.
3. On completion of work, Queensland Rail must again be notified promptly in writing, and a copy of the “as constructed drawings” of the infrastructure, the subject or the result of the work is to be provided. These drawings shall be prepared in accordance with construction and design methods approved by a professional engineer or certified by a professional engineer if required by law.
13.2 Powerline Warning Markers

Where appropriate Markers must be installed on overhead power lines near airports, low flying zones and cultivation fields for the safety and protection of personnel and equipment.

These markers are to be fitted at 50m intervals on the top conductor or staggered at 50m intervals if all conductors are located on the same plane.

Refer to AS 3891 part 1 and part 2 for other aircraft warning marker details.

13.2.1 Aircraft Warning Markers

Bright colored spheres draw attention of aircraft flying in the vicinity, indicating the presence of power line.

Dulmison’s two piece Polyethylene Sphere supplied complete with heliformed fittings for attachment to conductor using MEWP (Bucket Truck).

Ronstan’s aerial line marker can be easily installed using a standard bayonet and telepole-operating rod.

UF03 – supplied by DULMISON

RF111A supplied by RONSTAN

<table>
<thead>
<tr>
<th>DULMISON Part No.</th>
<th>Sphere Dia. (mm)</th>
<th>Cable Range (mm)</th>
<th>Weight (kg)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFO 3060</td>
<td>300</td>
<td>6.00 – 7.99</td>
<td>3</td>
<td>Add suffix or R (red) or Y (yellow) to part number for color required. (e.g. UFO3060R)</td>
</tr>
<tr>
<td>UFO 3080</td>
<td>300</td>
<td>8.00 – 9.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UFO 3100</td>
<td>300</td>
<td>10.00 – 11.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UFO 3120</td>
<td>300</td>
<td>12.00 – 13.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UFO 3140</td>
<td>300</td>
<td>14.00 – 15.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UFO 3160</td>
<td>300</td>
<td>16.00 – 18.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UFO 3190</td>
<td>300</td>
<td>19.00 – 22.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UFO 3225</td>
<td>300</td>
<td>22.50 – 26.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RONSTAN</td>
<td>RF111A</td>
<td>185</td>
<td>4.5 to 47</td>
<td>1.35 Marker supplied in Red color.</td>
</tr>
</tbody>
</table>

Table 13-2 – Marker Product Information – Aircraft warning Markers

13.2.2 Non Aircraft Warning Markers

These light weight Markers emit ultra violet light from the disc at center to deter birds and the bright colors reflecting sunlight attract the attention of cultivators and harvesters on the presence of powerlines.
These markers can be attached from ground using a telepole-operating rod and a simple tool to any size conductor from 4.5 to 47mm diameter.

These markers are supplied by Summit Engineers.

Part No.1096
Part No. 1010
Part No.1100

<table>
<thead>
<tr>
<th>Summit Engineers Product No.</th>
<th>Description of Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1096</td>
<td>'Quickmark' Permanent Marker</td>
</tr>
<tr>
<td>1010</td>
<td>Active Firefly Bird Deterrent Marker</td>
</tr>
<tr>
<td>1100</td>
<td>'Afterglow' Permanent Marker</td>
</tr>
</tbody>
</table>

Table 13-3 – Marker Product Information – Non Aircraft Warning Markers
13.2.3 Powerline Warning Marker Erection Detail

Figure 13-1 – Number of Markers per Span Length

General notes:

1. The number of powerline warning markers and spaces are to be as requested by the property owner. This drawing details the technical limitations for a typical installation.
2. Use CS000501F.113: Installation of permanent markers on overhead cables and their supporting structures indemnity form when making agreements.
3. The number of marker balls per conductor is limited to two, so as not to exceed tension of 70% of the conductor nominal working load at 15°C, 900 Pa wind. For higher wind pressures refer to Distribution Network Standards.
4. The reduction in ground clearance at 50°C will be typically less than 150mm. Refer to the Overhead Construction Manual for regulation ground clearances.
13.3 Procedures for Obtaining Sanction of Water Crossings

13.3.1 Purpose

The purpose of this document is to ensure that Ergon Energy fulfils its statutory obligations when carrying out any works across tidal lands or waterways and all navigable waterways including recreational dams.

It is imperative that Ergon Energy fulfils such statutory obligations as failure to do so renders the crossing illegal and exposes Ergon Energy to liability. The group responsible for design of the crossing should contact the environmental operations group for assistance with obtaining planning and environmental approvals for the crossings.

13.3.2 Scope

The following sets out the procedure for preparation and lodgement of an Integrated Development Assessment System (“IDAS”) application under the *Sustainable Planning Act 2009* for approval of crossings of tidal and non-tidal waters including referral of applications to Regional Harbour Masters (“RHM”) for navigable waters (both tidal and non-tidal).

For tidal works in a local government tidal area, the assessment manager will generally be the Local Government Authority, but applications involving tidal works will also need to be referred to the State Assessment and Referral Agency (SARA) for assessment. This agency will seek input from Maritime Safety Queensland about the works. For non-tidal works the SARA will be the assessment manager.

This procedure should be considered in conjunction with the Australian Standard AS6947-2009 Crossing of Waterways by Electricity Infrastructure and the Ergon Energy ES000905R10x Environmental Planning for Works series of documents in particular ES000905R102 EPW Environmental Legislation and Triggers

This procedure covers crossings over or under waterways, and all navigable waterways including inland streams and recreational dams and applies to all Ergon Energy works including:

- Overhead lines including pilot wires, street light mains and stays
- Submarine cables
- Cables or lines attached to or through bridges (where conduit/attachment is not provided as part of original bridge structure)
- Any other miscellaneous works within tidal waters or waterways (e.g. construction / demolition of jetties or pontoons)

It is applicable to the following construction scenarios:

- New construction of tidal works
- Any alteration to construction, clearance or location, or voltage changes (increase/decrease in voltage)
- Total removal of construction

Geographically, the instruction covers:

- Tidal waters including rivers, creeks, coastal bays and passages
- Land under tidal water (tidal land - e.g. salt flats inundated at high tide)
- Navigable waterways including inland streams and dams, with particular attention paid to those on which the controlling authority allows recreational boating.

Note: that where non-tidal works will not interfere with water, then there is no need for approval. Where non-tidal works will interfere with water, the works may not require approval if they comply with the Riverine protection permit exemption requirements.
No approval is required for tidal works that are:

- erecting safety and warning signs, or other minor works such as fencing, bollards, revegetation works, or works with a footprint of 5 square metres or less
- constructing temporary tracks involving earthworks of less than 100 cubic metres of material
- installing power connections in an erosion prone area for approved development such as toilet blocks, jetties and picnic shelters etc.
- installing electrical network infrastructure in an erosion prone area; that does not involve locating infrastructure further seaward of existing permanent development (e.g. formed roads or houses), which would be protected if threatened by sea erosion.

(Source: letter from Department of Environment and Heritage Protection dated 3 April 2013)

Notes: Tidal works completely or partly within a State managed boat harbour or on strategic port land or for a port authority or port operator, or a public marine facility constructed by or for Queensland Transport, a port authority or a port operator are an exception to this process and will need to be considered individually. The Port Authority or SARA will generally be the assessment manager, rather than local government.

13.3.3 Definitions

A **Waterway Crossing** shall be deemed to be a ‘Crossing of navigable waterways by electricity infrastructure’ in the spirit of Australian Standard AS6947-2009 Crossing of Waterways by Electricity Infrastructure.

Tidal Water is defined as: the sea and any part of a harbour or watercourse ordinarily within the ebb and flow of the tide at spring tides; or the water downstream from a downstream limit declared under the *Water Act 2000*.

Navigable Water is defined as Waters where it can, under normal conditions, be reasonably expected that a vessel may gain access either by being launched from a transport vehicle or by navigating along the waterway (i.e. not flood conditions and not waterways only accessible by launching canoes or dinghies from the bank).

13.3.4 Procedure

Flowchart 1 shows **where** this approval process is necessary to obtain authorisation to begin construction of an overhead or underwater cable crossing of a waterway, excluding tidal waters in the coastal management district.

Flowchart 2 shows the detailed procedure on **how** to obtain authorisation to begin construction of an overhead or underwater cable crossing of a waterway, excluding tidal waters in the coastal management district.
To determine if a project site is above or below the tidal limit of a particular waterway a licensed surveyor can be engaged to relate tidal planes calculated by Maritime Safety Queensland (MSQ) to the site. These tidal planes can be obtained from the MSQ website (www.msq.qld.gov.au/Tides.aspx).

Note:
1. Formal definitions of “navigable” may also encompass waterways accessible only to smaller dinghies etc. these are covered by statutory clearance regulations and are not part of this process.
13.5 Flowchart 2

<table>
<thead>
<tr>
<th>Activity</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the waterway tidal</td>
<td>If “yes” Sustainable Planning Act 2009 approval under the IDAS process and RHM referral is required</td>
</tr>
<tr>
<td>2. Is the waterway navigable</td>
<td>If “yes” then referral to RHM is required (See steps 1 to 8) If “no” to both 1 & 2 then normal design conditions and approvals apply</td>
</tr>
</tbody>
</table>
| 3. Stakeholder negotiations | If the proposal invokes an affirmative answer to one or more of the above questions then the preliminary discussions and negotiations will need to be held with the stakeholders to determine any special requirements for construction, or if the works will be able to proceed at all. (Note: IDAS approvals for tidal works below high water mark and outside a canal will require the consent of the owner of the land be submitted with application. Non-tidal waters will require approvals as for normal works plus RHM sanction.) Stakeholders may include but would not be limited to:
 - Regional Harbour Master (Must discuss acceptable clearances at this stage). Refer to Sheet 7 for listing of Maritime Safety (RHM) Contact Details
 - Department of State Development, Infrastructure and Planning (DSDIP)
 - Department of Environment and Heritage Protection (EHP)
 - Department of Agriculture, Fisheries & Forestry (DAFF)
 - Department of Natural Resources & Mines (DNRM)
 - Relevant Port Authority or Port Operator
 - Local Government or Gold Coast Waterways Authority (in Gold Coast waters)
 - Landholders / Developers of adjacent properties. |
| 4. Introductory Works | Existing crossings may be subject to previous approvals that will need to be referenced
 1. Check for any previous approvals
 2. Obtain tidal information / relevant water level datum
 3. Obtain tenure information
 4. Obtain property owners consent
 Crossing drawings will need to show the HAT, LAT, and MHWS levels for tidal waters and full supply levels for non-tidal waters.
 - For tidal waters the reference datum is Highest Astronomical Tide (HAT) above Australian height datum (AHD) plus wave effects and is available by contacting Maritime Safety Queensland (Tidal Information) (Refer to Sheet 7 for Contact Details)
 - For non-tidal waters the maximum water level is typically the peak of the bank plus wave effects.
 Note: Clearances greater than statutory clearance may be required for some waterways for reasons other than navigation e.g. flood clearance. This falls outside the scope of this process and is considered as part of standard design procedure
 Conduct title searches for land on which works will be constructed or land that abuts or adjoins the proposed crossing. Obtain real property plans
 If Ergon does not hold tenure over the land, the IDAS assessment manager may require written confirmation from the owner of the land that they consent to the undertaking of the works for which the approval is sought |
| 5. Field Survey & Design | Carry out survey and mark support positions and stays. IDAS approvals (tidal works) will need surveys tied into a Permanent Survey Mark (PSM) or an acceptable GPS established datum level for location and levels. Non-tidal works need only be referenced to an appropriate reliable water level mark. Complete crossing sag and catenary design to provide appropriate clearance for crossing at maximum conductor design temperature. (A registered surveyor may be required to tie works back to a remote PSM or alternatively to establish a new PSM or level datum close to the crossing to enable an engineering surveyor to tie in the crossing survey).
 Take digital photographs of the area for inclusion in the application
 If the waterway is navigable (by the definition above) normally provide a minimum 13 metre clearance (10m mast height plus 3m safety margin) above the water level datum, at maximum conductor design temperature, unless other requirements dictate. Refer later in this document for safety clearances.
 RHM or specific location may require allowance for greater or lesser vessel height. This must be discussed and determined in preliminary stakeholder negotiations |
6. Determine “Water Allocation Area”

The IDAS approval process provides for a “water allocation area” around the crossing in some situations. A water allocation area is a nominated clearance area around the works at the shoreline to ensure the safety and integrity of the works. The Regional Harbour Master will look at whether the proposal impedes the navigation access to the property or adjacent properties or causes a safety hazard for vessels, and will also check that there are no existing or proposed structures within the proposed water allocation area which would prevent the location of the works in that area.

Generally a water allocation area would only be required for cable crossings from land other than roadways. There is no time limit on the process for obtaining endorsement of a water allocation area plan.

7. Prepare Crossing Plan

Complete a Crossing and Signage plan to the standard typical format shown in drawing 3143 Sheets 9 and 10. The drawings submitted for approval must clearly define any water allocation area as well as the type, location and extent of the works including poles, stays, signs etc. Refer to the DEHP’s Operational Policy “Building and Engineering Standards for Tidal Works”

1. Have drawings approved by a RPEQ

Drawings must be signed by a Registered Professional Engineer of Queensland (“RPEQ”) who is responsible for ensuring compliance with the above standard and Ergon design standards.

2. Log plan on GIS

Log the proposed works in Ergon’s GIS. This is done by creating a “waterway crossing object” by inputting the mandatory data fields. The GIS will then allocate a Waterway Crossing ID to be used as a reference number for the approval process.

Commence a Waterway Crossing GIS Data Entry Form for the crossing to be used by Network Data for final entry of crossing data.

8. Submit to RHM for comment

Send two (2) copies of the drawings showing the water allocation area to the Regional Harbour Master (“RHM”) for comment on the proposed works.

Make any amendments suggested by the RHM and resubmit as necessary.

END OF PROCESS FOR NON-TIDAL WATERS

9. Notify and request comment from relevant authorities

Formally notify relevant authorities/parties of the proposal, send copies of drawings (endorsed by RHM if tidal waters) and locality plan and request written approval in support of application. This applies to:

- Local Authorities – letter of comment.
- DAFF for fish habitat areas requesting advice on resource allocation.
- DNRM for other than fish habitat areas requesting advice on resource allocation.
- Port Authority or Port Operator for relevant port area if applicable – letter of comment.
- Other statutory authorities who may have an interest in the waterway or adjacent land if applicable (e.g. Gold Coast Waterway Authority for works in Gold Coast waters).
- Owners/developers of adjacent land that will be affected by the works and others as the site dictates.

10. Draw cheque for IDAS application fee

Local Governments are generally the Assessment Managers for all prescribed tidal works and this includes waterway crossings. As such each Local Authority may set its own application fee structure to cover these approvals. Contact the relevant Council to determine any fees involved and draw a cheque to cover any fees which need to be lodged with the application.

11. Complete and Submit the IDAS Application

Complete the IDAS development application forms, compile the supplementary documents and submit to the assessment manager as detailed in form 1 part A.

The application is to include:

- IDAS Development Application Form 1 (Application details)
- IDAS Development Application Form 21 (Other work in a watercourse), where relevant
- IDAS Development Application Form 23 (Tidal works and development within coastal management districts), where relevant
- IDAS Assessment Checklist
- Cheque for the prescribed fee
- Three copies of drawings certified by RPEQ
- Copy of the plan showing any water allocation area endorsed by RHM
- Copy of tenure details and real property plans for adjacent land (search results)
- Copy of letters of consent from land owners
- Copies of any letters of comment from relevant authorities

Page 86 of 206
12. Attend to requests for further information/alteration

There may be ongoing negotiations with the assessment manager and the referral agencies over issues such as signage and their placement, spheres on conductors, clearing of marine vegetation etc. Digital photographs of the area can be invaluable tools in this process.

13. Receive IDAS approval

On receipt of the IDAS approval carry out the following:

- Update records as approved
- Record crossing approval details on the GIS Data form
- Record any special conditions and alterations to construction requirements such as signs etc on construction plans

14. Construct as approved

In addition to the powerline construction particular site requirements and conditions may apply to certain waterways and these need to be included with construction file.

15. Notification of construction completion

Within three (3) months of completing the works, the RPEQ must send a letter certifying that the works have been constructed in accordance with the approved plans and conditions of development permit to both the assessment manager and RHM.

Forward the completed GIS Data Form to the Network Data for entry of the crossing details into the GIS. Send copy of plan and electronic shape file to the Spatial Services Unit of MSQ for inclusion in MSQ maps. See sheet 7.

Notes:

1. For Tidal Lands and Waterways. All proposals shall show the Highest Astronomical Tide (HAT) or Mean High Water Springs (MHWS) and the minimum design and safe clearances above this level.
2. Refer to sample crossing (10476-10) and signage drawings (10476-9) in Appendix D.
3. Refer to ‘Guidelines for the Placement of Warning Signs’ later in this document for guidelines on the placement of signs.
4. If crossing is assessable, are there options to avoid. Given the cost of design, approval, construction and maintenance of navigable crossings, alternative routes should be assessed thoroughly.
5. The crossing span for crossings with designated (signed) clearances must be strained and stayed away from crossing on both sides.
6. Signs need to be to Ergon standard for sign construction and guidelines for placement.
7. Approval drawings need to be in standard format.
8. Safety envelope guidelines under overhead conductors:
 - Permanently Unenergised e.g. staywires = 0.6m
 - LV – insulated or bare aerial = 2.8m
 - HV – greater than 650V and lower than 33kV = 3.1m
 - greater than 33kV and less than 132kV= 4.3m
 - safe clearance = minimum design clearance – safety envelope
 - minimum design clearance = height of conductor at maximum design temperature above maximum expected water level.

9. If the procedure stalls for any reason, the approval authority will not pursue the matter. The crossing may be built, energised and remain illegal indefinitely.
10. It is therefore essential that self-checking procedures be adhered to, and appropriate follow ups be performed by e-mails, faxes and/or phone, all requirement of statutory bodies be adhered to or renegotiated i.e. special clearances, warning signs etc.
13.5.1 Contact Details for Maritime Safety Queensland

(Regional Harbour Master)

Brisbane
MacArthur Avenue East, Pinkenba Phone (07) 3632 7500

Sunshine Coast
Old Pilot Station, Parkyn Parade, Mooloolaba Phone (07) 5373 2310

Gold Coast
40-44 Sea World Drive, Main Beach Phone (07) 55851810

Gladstone
Level 7, 21 Yarron Street Phone (07) 4971 5200

Bundaberg
Floor 2, 46 Quay Street Phone (07) 4132 6600

Harvey Bay
Buccaneer Avenue Phone (07) 4194 9600

Mackay
44 Nelson Street Phone (07) 4944 3700

Airlie Beach
384 Shute Harbour Road Phone (07) 4841 4500

Townsville
60 Ross Street, South Townsville Phone (07) 4421 8100

Cairns
100-106 Tingira Street, Portsmith Phone (07) 4052 7400

Karumba
Lot 75 Yappar Street Phone (07) 4745 9281

Thursday Island
Hastings Street Phone (07) 4069 1351

Weipa
1 Iraci Ave Phone (07) 4069 7165

13.5.2 Contact Details for Maritime Safety Queensland (Tidal Information)

Tidal Services Unit
Maritime Safety Queensland
GPO Box 2595 Brisbane 4001 Telephone: (07) 3066 3517
Email: tides@msq.qld.gov.au

13.5.3 Contact Details for Maritime Safety Queensland (Charts)

Spatial Services Unit
Transport Safety Branch
PO Box 673
Fortitude Valley Queensland 4006
Telephone: (07) 3066 3900
Email: msqmail@msq.qld.gov.au
IDAS Development Application Steps:

Riverine protection permit exemption requirements

Coastal Management District Search Application Form

Development Approvals Searches (Coastal) Application Form

IDAS Application Forms

IDAS Development Application Form 1

IDAS Assessment Checklist

Prescribed Tidal Work Information sheet

Guideline: Local government assessment of Prescribed Tidal Works

Guideline: Making an application for prescribed tidal work

Operational Policy, Building and Engineering Standards for Tidal Works

Guideline: Assessable coastal development

Guideline: Owner’s Consent for assessable coastal development

13.6 Guidelines for the Placement of Warning Signs of Water Crossings and Boat Ramps (Launching Facilities)

To be read in conjunction with Section 3.3 and Section 4.3 of Australian Standard AS6947-2009 ‘Crossings of waterways by electricity infrastructure’.

Crossings of navigable waterways, which pose a threat to boating, will normally be required to have warning signage installed to the satisfaction of the Regional Harbour Master (and may require approval by SARA).

The intention of signage is to provide appropriate hazard mitigation by warning approaching boating traffic of the presence of either overhead or submarine cable crossings and for overhead crossings the safe clearance above maximum normal water level (Highest Astronomical Tide
“HAT” plus wave effects for tidal waters) at the lowest point of the crossing span over the waterway.

Submarine cable crossing signs (Drawing 10476-08 Appendix D) are to be placed at a suitable visible location, on the embankments, at each end of the crossing.

Overhead crossing signs (Drawing 10476-04 / 06 Appendix D) are to be placed on the side closest to the navigable channel so that they can be seen when approaching the crossing from either direction. They need to be bi-directional and orientated at 45° to the shoreline. The signs shall be visible for at least 100m from the crossing up to the point of crossing so that they are visible from vessels approaching or transiting under or along the span. If the navigable channel exceeds 50m in width signs are to be placed on both sides of the crossing.

Where the crossing or immediate signage is obscured by bends in the waterway, vegetation or structures etc. then additional signs (Drawing 10476-07 Appendix D) may need to be placed at appropriate locations to warn of the crossing ahead.

Where crossings exist close to launching facilities additional signs (Drawing 10476-07 Appendix D) is required adjacent to the boat ramp. These signs shall be situated at locations such as formal public boat launching sites that provide access to the navigable waterway and that are within 5km from an overhead crossing.

Where for any reason the standard signage or placement is not considered appropriate or effective, the design may be varied where the safety outcome is improved. The design and placement of any special or varied signage must be agreed to by the approving authorities and Ergon Standards section.
14. ELECTRICAL DESIGN

14.1 Conductor Layout Temperatures

The following temperatures are recommended for use as a standard for layout of Ergon Energy Corporation distribution lines in the absence of planning or other directions:

- Rural HV and SWER distribution radial feeders
 Layout to 60°C

- Urban and semi urban HV distribution feeders where there is a possibility of load redistribution between zone substations
 Layout to 75°C

- Open wire LV – Both urban and rural
 Layout to 75°C

- LV Aerial Bundled Conductor
 Layout to 80°C

14.1.1 Ambient Conditions for Thermal Ratings

Recommended Ambient conditions for calculation of thermal ratings are listed in the attached table in the absence of planning or other directions.

These conditions are based on dividing the ERGON supply area into four regions, North and Central (FN, NQ, MK and CA) and South (WB and SW) with a further division of Coastal (within 50km of the coast) and Inland.

Three operating conditions have been assumed as follows:

- Summer 6pm - generally the most onerous case.
- Summer Noon - can sometimes coincide with system peak for feeders with significant domestic air conditioning load.
- Winter Peak - can sometimes coincide with system peak for feeders in colder areas.

The following definitions apply with respect to the thermal rating of Overhead lines:

14.1.2 Normal Thermal Rating

A line’s normal thermal rating is the maximum continuous electrical load which can be carried on that line with a minimal attendant risk of infringing design clearances. The normal thermal rating is dependent on the design maximum conductor temperature for the line and is calculated on a probabilistic basis for the relevant conditions. The specified conditions, summer noon, summer 6pm and winter 6pm have been selected on the basis of being the times when system loadings are likely to be the most critical.

14.1.3 Emergency Thermal Rating

A line’s emergency thermal rating is the maximum electrical load which can be carried on that line under single contingency conditions with a similar attendant risk of infringing design clearances as the normal thermal rating after allowance for the limited time periods under which system contingency conditions are likely to apply.
Table 14-1 – Conductor Layout Temperatures

<table>
<thead>
<tr>
<th>AREA</th>
<th>Temperature (°C)</th>
<th>Wind Speed (m/s)</th>
<th>Solar Radiation (Watts/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Emergency</td>
<td>Direct</td>
</tr>
<tr>
<td>NORTH & CENTRAL - Far North, North Qld, Mackay, Capricornia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Area within 50km of coast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Noon</td>
<td>35</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Summer 6pm</td>
<td>30</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Winter 6pm</td>
<td>20</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Inland Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Noon</td>
<td>40</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>Summer 6pm</td>
<td>30</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>Winter 6pm</td>
<td>20</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>SOUTH - Wide Bay, South West</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Area within 50km of coast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Noon</td>
<td>35</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Summer 6pm</td>
<td>30</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Winter 6pm</td>
<td>10</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Inland Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Noon</td>
<td>40</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>Summer 6pm</td>
<td>30</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>Winter 6pm</td>
<td>10</td>
<td>0.6</td>
<td>2</td>
</tr>
</tbody>
</table>

Angle of Conductor to wind assumed at 60°
Conductor Surface Conditions – assume weathered rural
Absorbitivity 0.5
Emissivity 0.5
Reflection of Ground 0.2
14.2 Conductor Thermal Ratings

Table 14-2 – Conductor Thermal Ratings for Areas North and Central (Far North, North Qld, Mackay, Capricornia)

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>Conductor</th>
<th>Maximum Operating Temperature</th>
<th>Coastal Area - within 50km of the coast (Amps)</th>
<th>Inland Area - greater than 50km from the coast (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Code</td>
<td></td>
<td>Summer Noon</td>
<td>Summer 6pm</td>
</tr>
<tr>
<td>Libra</td>
<td>7/3.00 AAC</td>
<td>75°C</td>
<td></td>
<td>Normal</td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>207</td>
<td>269</td>
</tr>
<tr>
<td>Mars</td>
<td>7/3.75 AAC</td>
<td>75°C</td>
<td></td>
<td>272</td>
<td>354</td>
</tr>
<tr>
<td>Moon</td>
<td>7/4.75 AAC</td>
<td>75°C</td>
<td></td>
<td>362</td>
<td>471</td>
</tr>
<tr>
<td>Pluto</td>
<td>19/3.75 AAC</td>
<td>75°C</td>
<td></td>
<td>499</td>
<td>651</td>
</tr>
<tr>
<td>Saturn</td>
<td>37/3.00 AAC</td>
<td>75°C</td>
<td></td>
<td>570</td>
<td>745</td>
</tr>
<tr>
<td>LV ABC</td>
<td>4 x 95 sq mm</td>
<td>80°C</td>
<td></td>
<td>205</td>
<td>NA</td>
</tr>
<tr>
<td>LV ABC</td>
<td>2 x 95 sq mm</td>
<td>80°C</td>
<td></td>
<td>220</td>
<td>NA</td>
</tr>
<tr>
<td>LV ABC</td>
<td>2 x 50 sq mm</td>
<td>80°C</td>
<td></td>
<td>140</td>
<td>170</td>
</tr>
<tr>
<td>LV ABC</td>
<td>4 x 50 sq mm</td>
<td>80°C</td>
<td></td>
<td>130</td>
<td>NA</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7/2.5 AAAC</td>
<td>60°C</td>
<td></td>
<td>124</td>
<td>165</td>
</tr>
<tr>
<td>Helium</td>
<td>7/3.75 AAAC</td>
<td>60°C</td>
<td></td>
<td>199</td>
<td>269</td>
</tr>
<tr>
<td>Iodine</td>
<td>7/4.75 AAAC</td>
<td>60°C</td>
<td></td>
<td>262</td>
<td>356</td>
</tr>
<tr>
<td>Apple</td>
<td>6/1/3.0 ACSR</td>
<td>60°C</td>
<td></td>
<td>137</td>
<td>183</td>
</tr>
<tr>
<td>Banana</td>
<td>6/1/3.75 ACSR</td>
<td>60°C</td>
<td></td>
<td>178</td>
<td>240</td>
</tr>
<tr>
<td>Raisin</td>
<td>3/4/2.5 ACSR</td>
<td>60°C</td>
<td></td>
<td>88</td>
<td>118</td>
</tr>
<tr>
<td>Sultana</td>
<td>4/3/3.0 ACSR</td>
<td>60°C</td>
<td></td>
<td>119</td>
<td>159</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>60°C</td>
<td>33</td>
<td>44</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>60°C</td>
<td>48</td>
<td>64</td>
<td>58</td>
<td>74</td>
</tr>
</tbody>
</table>

Winter 6pm

Coastal Area - within 50km of the coast (Amps)

Inland Area - greater than 50km from the coast (Amps)
Table 14-3 – Conductor Thermal Ratings for Areas South (Wide Bay, South West)

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Conductor Type</th>
<th>Conductor Maximum Operating Temperature</th>
<th>Coastal Area - within 50km of the coast (Amps)</th>
<th>Inland Area - greater than 50km from the coast (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libra</td>
<td>7/3.00 AAC</td>
<td>75°C</td>
<td>207</td>
<td>269</td>
</tr>
<tr>
<td>Mars</td>
<td>7/3.75 AAC</td>
<td>75°C</td>
<td>272</td>
<td>354</td>
</tr>
<tr>
<td>Moon</td>
<td>7/4.75 AAC</td>
<td>75°C</td>
<td>362</td>
<td>471</td>
</tr>
<tr>
<td>Pluto</td>
<td>19/3.75 AAC</td>
<td>75°C</td>
<td>499</td>
<td>651</td>
</tr>
<tr>
<td>Saturn</td>
<td>37/3.00 AAC</td>
<td>75°C</td>
<td>570</td>
<td>745</td>
</tr>
<tr>
<td>LV ABC</td>
<td>4 x 95 sq mm</td>
<td>80°C</td>
<td>205</td>
<td>NA</td>
</tr>
<tr>
<td>LV ABC</td>
<td>2 x 95 sq mm</td>
<td>80°C</td>
<td>220</td>
<td>NA</td>
</tr>
<tr>
<td>LV ABC</td>
<td>2 x 50 sq mm</td>
<td>80°C</td>
<td>140</td>
<td>NA</td>
</tr>
<tr>
<td>LV ABC</td>
<td>4 x 50 sq mm</td>
<td>80°C</td>
<td>130</td>
<td>NA</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7/2.5 AAAC</td>
<td>60°C</td>
<td>124</td>
<td>165</td>
</tr>
<tr>
<td>Helium</td>
<td>7/3.75 AAAC</td>
<td>60°C</td>
<td>199</td>
<td>269</td>
</tr>
<tr>
<td>Iodine</td>
<td>7/4.75 AAAC</td>
<td>60°C</td>
<td>262</td>
<td>356</td>
</tr>
<tr>
<td>Apple</td>
<td>6/1/3.0 ACSR</td>
<td>60°C</td>
<td>137</td>
<td>183</td>
</tr>
<tr>
<td>Banana</td>
<td>6/1/3.75 ACSR</td>
<td>60°C</td>
<td>178</td>
<td>240</td>
</tr>
<tr>
<td>Raisin</td>
<td>3/4/2.5 ACSR</td>
<td>60°C</td>
<td>88</td>
<td>118</td>
</tr>
<tr>
<td>Sultan</td>
<td>4/3/3.0 ACSR</td>
<td>60°C</td>
<td>119</td>
<td>159</td>
</tr>
<tr>
<td>3/2.75</td>
<td>SC/GZ</td>
<td>60°C</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>3/2.75</td>
<td>SC/AC</td>
<td>60°C</td>
<td>48</td>
<td>64</td>
</tr>
</tbody>
</table>
14.3 Sequence Impedances

Table 14-4 – Positive, Negative and Zero Sequence Impedances of Standard Conductors

(with standard intermediate construction configurations in the Overhead Construction Manual)

<table>
<thead>
<tr>
<th>Conductor Code</th>
<th>Stranding</th>
<th>11kV Intermediate Delta to SCM Dwg 1039</th>
<th>22/33kV Intermediate Delta to SCM Dwg 1039</th>
<th>11kV Trident Construction to SCM Dwg 1079</th>
<th>22kV Trident Construction to SCM Dwg 1079</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R₁ & R₂</td>
<td>X₁ & X₂</td>
<td>R₀</td>
<td>X₀</td>
</tr>
<tr>
<td>Libra</td>
<td>7/3.00 AAC</td>
<td>0.707 j0.370</td>
<td>0.855 j1.627</td>
<td>0.707 j0.387</td>
<td>0.855 j1.593</td>
</tr>
<tr>
<td>Mars</td>
<td>7/3.75 AAC</td>
<td>0.452 j0.356</td>
<td>0.600 j1.613</td>
<td>0.452 j0.373</td>
<td>0.600 j1.579</td>
</tr>
<tr>
<td>Moon</td>
<td>7/4.75 AAC</td>
<td>0.284 j0.341</td>
<td>0.432 j1.598</td>
<td>0.284 j0.358</td>
<td>0.432 j1.564</td>
</tr>
<tr>
<td>Pluto</td>
<td>19/3.75 AAC</td>
<td>0.168 j0.321</td>
<td>0.316 j1.578</td>
<td>0.168 j0.338</td>
<td>0.316 j1.544</td>
</tr>
<tr>
<td>Saturn</td>
<td>37/3.0 AAC</td>
<td>0.135 j0.309</td>
<td>0.283 j1.566</td>
<td>0.135 j0.326</td>
<td>0.283 j1.532</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7/2.50 AAAC</td>
<td>1.05 j0.382</td>
<td>1.198 j1.638</td>
<td>1.05 j0.399</td>
<td>1.198 j1.605</td>
</tr>
<tr>
<td>Helium</td>
<td>7/3.75 AAAC</td>
<td>0.465 j0.356</td>
<td>0.613 j1.613</td>
<td>0.465 j0.373</td>
<td>0.613 j1.579</td>
</tr>
<tr>
<td>Iodine</td>
<td>7/4.75 AAAC</td>
<td>0.291 j0.341</td>
<td>0.439 j1.598</td>
<td>0.291 j0.358</td>
<td>0.439 j1.564</td>
</tr>
<tr>
<td>Apple</td>
<td>6/1/3.00 ACSR</td>
<td>0.91 j0.370</td>
<td>1.058 j1.627</td>
<td>0.91 j0.387</td>
<td>1.058 j1.593</td>
</tr>
<tr>
<td>Banana</td>
<td>6/1/3.75 ACSR</td>
<td>0.582 j0.356</td>
<td>0.730 j1.613</td>
<td>0.582 j0.373</td>
<td>0.730 j1.579</td>
</tr>
<tr>
<td>Raisin</td>
<td>3/4/2.5 ACSR</td>
<td>2.14 j0.382</td>
<td>2.288 j1.638</td>
<td>2.14 j0.399</td>
<td>2.288 j1.605</td>
</tr>
<tr>
<td>Sultana</td>
<td>4/3/3.0 ACSR</td>
<td>1.21 j0.370</td>
<td>1.358 j1.627</td>
<td>1.21 j0.387</td>
<td>1.358 j1.593</td>
</tr>
<tr>
<td>3/2.75 SC/GZ</td>
<td>14 j0.401</td>
<td>14.148 j1.657</td>
<td>14 j0.418</td>
<td>14 j0.418</td>
<td>14 j1.624</td>
</tr>
<tr>
<td>3/2.75 SC/AC</td>
<td>5.75 j0.401</td>
<td>5.898 j1.657</td>
<td>5.75 j0.418</td>
<td>5.898 j1.624</td>
<td>5.75 j0.392</td>
</tr>
</tbody>
</table>

Note:

These values are based on 75°C conductor temperature and 100 Ohm/m soil resistivity.
14.4 Electro-Magnetic Fields (EMF)

Magnetic Fields are fields, resulting from the flow of current through wires or electrical devices, which increase in strength as the current increases. Magnetic fields emitted by powerlines are directly proportional to the distance between current carrying conductors. The smaller the distance between the conductors the smaller the magnetic field emitted at a given point.

Magnetic fields are measured in units of Gauss (G) or Tesla (T). Gauss is the unit most commonly used in Australia. Tesla is the internationally accepted scientific term. Since most environmental EMF exposures involve magnetic fields that are only a fraction of a Tesla or a Gauss, these are commonly measured in units of microtesla (μT) or milligauss (mG), multiply by 10. That is 1μT = 10mG.

Reference document ME000301R123 EMF Layout Design Recommendations lists the distances from Electricity infrastructure at which point it can be expected that magnetic field strength levels will fall below the recommended level for continuous exposure. This applies to electrical infrastructure in the Ergon Energy network and relates to extremely low frequency (under 3 kHz), electric and magnetic fields.

For multiple circuits Ergon Energy Electrical System Designers can use ME000301F105 Magnetic Field Calculator.
15. APPENDIX A – OVERHEAD DESIGN PROGRAMS

15.1 Main Program Features

15.1.1 Overview

The Overhead Line Design Programs are now contained in a single executable file. This replaces the MS Excel files used previously. There are two other files required for the full operation of the software; Help.pdf and Conductor.OHD. The following steps are required when using the program for the first time. They will only need to be followed once.

15.1.2 Program Installation Steps

- Create a new folder to store the program in (e.g. “C:\LocalData\OHVB5”).
- Unzip OHLDP.exe, Conductor.OHD and Help.pdf into the folder created.
- Create a shortcut to the folder on your desktop.
- Run OHLDP.exe.
- On the first run of OHLDP.exe a fourth file is automatically created called LnSTDProg.cfg. This file contains the location of the conductor database so it can be automatically loaded on start-up.
 - In the main menu click on the Database File Location button.
 - Select the path to the folder created previously (e.g. “C:\LocalData\OHVB5”) and click on the Open button.

15.1.3 Main Menu

This menu is the first window displayed when the Overhead Line Design Programs are opened. It contains the buttons used to select each of the different programs, as well as allowing access to some general information About the software and the button to manually select the conductor Database File Location.

The bar at the bottom of the screen alternates between a description of the program the cursor is over, or it displays the location of the database file that has been loaded.

15.1.4 Operating Instructions

- To access any of the options displayed, click on the appropriate button.
- To return to this menu click the Menu button.

15.1.5 General Controls

Design Name and Number:

- Enter a description of the current design. This description will be displayed on any electronically stored or hardcopy design produced.

To Print:

- Click the Print button to print current window to a hard copy.

To Create a PDF File:

- Click Print to PDF and enter a file name to save the current window

To Save the Current Scenario:

- Click Save Scenario
- Enter a Scenario Number (1, 2 or 3)
To Load a Saved Scenario:
- Click on Scenario 1, Scenario 2 or Scenario 3 to load desired scenario

Note:
Exiting from one program and moving onto another program by clicking the MENU button will reset the SAVE SCENARIO and current data will be lost.

15.2 Conductor Selection

15.2.1 Overview
The conductor selection form is displayed any time the Select A Conductor button is clicked. This form allows a conductor selected from either the Ergon Standard conductors list or a list of All Conductors. Any relevant conductor information is then displayed in the program which the conductor was selected from. Alternatively there is the option of searching the conductor database by entering a search string.

Once a conductor has been selected, a detailed description of the conductor can be accessed through the CONDUCTOR DETAILS button.

15.2.2 To use the program
Using the Standard Conductor Selection Form:
- Select either Ergon Standard conductors or Ergon ALL conductors
- If Ergon ALL is selected, the range of conductors can be restricted to Metric, Imperial or ALL conductors.
- Select Conductor Type from the drop down list – only valid for Ergon ALL conductors.
- Select the Conductor Description from the drop down list.

Using the Conductor SEARCH Function:
- Click the SEARCH button to open the Search Conductor Form
- Enter the search string in the text box
- Click Start Search to find the first match (if one exists)
- If a match is found, click the Continue Search button to find any other conductors matching the search criteria.
- Alternatively click Select Conductor to use the conductor matching the search criteria

Using the CONDUCTOR DETAILS Function:
- Select a conductor using one of the previous two methods.
- Click on the Conductor Details button.
- Select either Electrical/Mechanical Data, Preform Fittings or Compression Fittings by clicking on the buttons

15.3 Conductor Tension Change Program

15.3.1 Overview
The program is designed to calculate the change in tension of a conductor given its initial stringing condition and nominated operating conditions. Both the horizontal swing and vertical sag at mid span under this tension are also calculated and can be displayed and compared
The tension under the operating conditions is calculated by solving the equation below for \(T_o \):

\[
\left(\frac{c_1 W L}{T} \right)^2 - T = \left(\frac{c_1 W_o L}{T_o} \right)^2 - T_o + c_2 t
\]

Where:
\[
c_1 = \frac{EA}{24}, \quad c_2 = \alpha EA
\]

\(L \) = ruling span (MES) (m)
\(T \) = tension under the initial conditions (N)
\(W \) = weight of the conductor under the initial conditions (N/m)
\(T_o \) = tension under the operating conditions (N)
\(W_o \) = weight of the conductor under the operating conditions (N/m)
\(t \) = temperature under the initial conditions less the temperature under the operating conditions (°C)
\(E \) = final Modulus of Elasticity (Pa)
\(A \) = total sectional area of the conductor (m²)
\(\alpha \) = the coefficient of linear expansion (per °C)

The vertical sag and horizontal swing is calculated from the following equations:

\[
S_v = \frac{W \times L^2}{8 \times T}, \quad S_h = \frac{P \times D \times L^2}{8 \times T}
\]

Where:
\(S_v \) = vertical sag at mid span (m)
\(S_h \) = horizontal swing at mid span (m)
\(W \) = conductor weight (N/m)
\(P \) = wind pressure under final conditions (Pa)
\(D \) = conductor diameter (m)
\(L \) = span length (m)
\(T \) = final tension (N)

The conductor transition span, depending on the region selected is always taken into account. If the ruling span exceeds the transitions span, the tension of the conductor under the selected conditions will be limited. In such instances, the limitation boundary is for limit state conditions applicable for the selected region instead of the selected stringing conditions.

The program allows the change in tension to be calculated either by selecting conditions from drop down lists or by entering all relevant data. This is contained on two separate sheets, entitled Conductor Tension Change Select, to select conditions from drop down lists, and Conductor Tension Change Enter, to enter all relevant data into spaces provided.

For the Conductor Tension Change Enter form a conductor can be selected using the select conductor button.

15.3.2 To use the program

- Under Conductor Tension Change on the main form choose the Select or Enter button.

Using the Conductor Tension Change Program (Select Version):
- Select a Conductor by clicking the Select Conductor button.
- Select the Stringing Tension from the drop down list. If an unlisted value is required, type the Stringing Tension in the drop down list.
Enter the **Ruling Span (MES)** in the Ruling Span text box.

Enter the **Actual Span** in Actual Span text box.

Select the **Ground Clearance Operating Temperature** from the drop down list. If an unlisted value is required type the **Ground Clearance Operating Temperature** in the drop down list.

Select the **Region** in which the construction is situated by clicking the desired option.

Click the **Calculate Tension** button to calculate and display the tension, vertical sag and horizontal swing under the selected conditions.

To find the conductor sag at a specified point enter the location along the span as either a percentage of span length or by entering a span location in metres and selecting the appropriate operating condition.

Click **Calculate Sag** to update the sag at the specified point.

To view the horizontal swing and vertical sag profiles graphically, click **Graph Conductor Sag**.

Using the checkboxes, select the **Sag Profile/s** which are required to be displayed.

Using the Conductor Tension Change Program (Enter Version):

There are three choices – final tension, stringing tension level attachment height and stringing tension different attachment heights. Note that this does not take into account the transition span.

For all calculation types:

- Manually input the **Conductor Data**, consisting of **Overall Diameter**, **Total Cross-sectional Area**, **Calculated Breaking Load**, **Unit Mass**, **Final Modulus of Elasticity** and **Coefficient of Linear Expansion** in the text boxes provided.

- Alternatively select a Conductor by clicking the **Select Conductor** button.

For final tension:

- Enter the **Initial Operating Conditions**, including the **Initial Conductor Tension**, **Initial Conductor Temperature** and **Initial Wind Pressure** in the text boxes provided.

- Input the **Span Details**, consisting of **Ruling Span (MES)** and **Actual Span**.

- Input the **Final Operating Conditions**, consisting of **Conductor Temperature** and **Wind Pressure at time of Measurement**.

- Click the **Calculate** button to calculate and display the tension, vertical sag and horizontal swing under the conditions entered.

For stringing tension for level attachment height:

- Enter the **Measured Vertical Conductor Sag** at mid-span in the text box provided.

- Input the **Span Details**, consisting of **Ruling Span (MES)** and **Actual Span**.

- Input the **Final Operating Conditions**, consisting of **Conductor Temperature** and **Wind Pressure at time of Measurement**.

- Click the **Calculate Tension** button to calculate and display the initial tensions in kN and %CBL.

For stringing tension - different attachment height:

- Enter the **Conductor Profile** consisting of **Difference in Conductor Attachment Heights** and **Distance from First Pole to Lowest Point on Span** in the text boxes provided.

- Input the **Span Detail, Actual Span** in the text box provided.

- Click the **Calculate Tension** button to calculate and display the initial tensions in kN and %CBL. A **Graphical Span Representation** will be shown to verify the line profile.

15.4 Maximum Span – Mid Span Clearance Limitation Program
15.4.1 Overview

The program is designed to calculate the maximum span for a chosen construction to ensure the separation at mid span is adequate to prevent conductor clashing.

The maximum span is calculated in accordance to C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Clause 9.3.

The equation below calculates the valid mid span clearance:

\[
\sqrt{X^2 + (1.2Y)^2} \geq \frac{U}{150} + k\sqrt{D + l_i}
\]

Where:
- \(X\) = is the projected horizontal distance in metres between the conductors at mid span
- \(Y\) = is the projected vertical distance in metres between the conductors at mid span
- \(U\) = is the rms vector difference in potential (kV) between the two conductors when each is operating at its nominal voltage
- \(K\) = is a constant, normally equal to 0.4, but consideration should be given to increasing it outside of Region A
- \(D\) = is the greater of the two conductor sags in metres at the centre of an equivalent level span and at a conductor operating temperature of 50˚ in still air
- \(l_i\) = is the length in metres of any free swing suspension insulator associated with either conductor

The conductor transition span, depending on the region selected is taken into account. If the ruling span exceeds the transition, the tension of the conductor under the selected conditions will be limited. In such instances, the limitation boundary is for limit state conditions applicable for the selected region instead of the selected stringing conditions.

The program is designed so that different pole construction can be chosen at each end of the span i.e. both crossarm construction and deviation angle can be chosen at each end. Option is given to select the crossarm length, either as standard construction or at other defined dimension.

In instances where a different pole construction is selected at each end of the span, the horizontal distance between the conductors at mid span is found by taking the average of the distances between the conductors at each end of the span. The same is also applied for vertical distance.

15.4.2 To use the program

- Under Maximum Span on the main form choose the **Select** button.
- Select a Conductor by clicking the **Select Conductor** button.
- Select the **Line Voltage** of the conductor
- Select the **Region** in which the construction is situated from the options available
- Select the **Stringing Tension** from the drop down list.
- Enter the **Ruling Span (MES)** in the corresponding textbox

For Poles 1 and 2:
- Enter the **Deviation Angle** in the corresponding textbox
- Select the **Construction Type** from the drop down list.
- Select the **Crossarm Height** from the pole tip from the drop down list.
- Select the **Crossarm Length** from the drop down list
- Click the **Calculate** button to calculate and display the maximum span limited by the mid span clearance.
15.4.3 Assumptions

- For Intermediate constructions where a pin insulator is used, the depth of the crossarm is 125mm in all instances.
- The projected vertical and horizontal distances are based on distances in Dwg 3131 in the “Layout Clearances” section for 11/22/33kV construction.
- The maximum span is calculated under the operating conditions of 0Pa at 50°C.

15.5 Allowable Pole Tip Loads Program

15.5.1 Overview

The program is designed to calculate the allowable pole tip load under limit state and sustained load conditions.

It determines the allowable pole tip loads based on either the pole strength or the foundation strength after allowance for wind on the exposed pole area. If the pole strength is less than compared to the foundation strength, then this is taken as the allowable pole tip loads or vice versa. The factor limiting the allowable pole tip loads is displayed with the calculated allowable pole tip loads.

The allowable pole strengths are dependent on whether the pole is new or existing:

- For a **new pole** the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State and 0.2 for sustained loads.
- For an **existing pole with no change in tip load** the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State and 0.2 for sustained loads.
- For an **existing pole with a change in tip load** the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State and 0.2 for sustained loads.

The allowable foundation loads are calculated based on C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Appendix C.

The relevant diameters are based on pole strength group S2. These diameters allow calculation for wind load and foundation load as provided by the following equations:

For Wind on Pole

\[
\text{Diameter at ground} = \frac{(D_B - D_T)}{(H - 2) \times (2 - J) + D_B}
\]

\[
\text{Pole Centroid} = \left(\frac{(2 \times D_T + D_G)}{(D_T + D_G) \times h}\right) / 3
\]

\[
\text{Pole Taper} = \frac{(D_2 - D_T)}{(H - 2)}
\]

\[
\text{Area} = \frac{(D_T + D_G) \times h}{2}
\]

\[
\text{Wind on Pole (kN)} = \frac{(\text{Area} \times \text{Wind Pressure})}{1000}
\]

\[
\text{Wind on Pole refer to pole tip (kN)} = \frac{(\text{Wind on Pole} \times \text{Pole Centroid})}{h}
\]

For Foundation Loads

\[
\text{Average below ground Diameter} = D_T + \text{Pole Taper} \times (h + J/2)
\]
Maximum Tip Load to avoid over turning P_o (Limit State)
\[= \frac{(K \times 1.8 \times D \times J^3)}{(12 \times (h + \frac{3}{4}J))} \]

Maximum Tip Load to avoid overturning P_o (Sustained)
\[= \frac{(K \times 0.5 \times D \times J^3)}{(12 \times (h + \frac{3}{4}J))} \]

Where:
- D_T = pole tip diameter (m)
- D_G = diameter at ground level (m)
- D_B = diameter 2m from butt (m)
- D = average below ground diameter (m)
- J = setting depth (m)
- H = pole length (m)
- h = pole height above ground (m)
- K = passive soil reaction per unit depth (kPa/m)
- P_o = maximum tip load to avoid overturning (kN)

(The allowable pole tip load is then the lower of P_o; the foundation failure load and the pole element strength less the wind load on the pole referred to the pole tip (applicable to limit state only).)

The program allows the allowable pole tip load to be calculated either by selecting conditions from drop down lists or by entering all relevant data. This is contained in two separate programs. Either the Select Version or the Enter Version can be opened by pressing the appropriate button on the main menu.

15.5.2 To use the program

- Under Allowable Pole Tip Loads Select on the main form choose the Select or Enter button.

Using the Allowable Pole Tip Loads Program (Select Version):

- Select the Pole Length from the drop down list.
- Select the Pole Strength from the drop down list. (The nominal pole strength is only used in the calculation of wind loads)
- Select the Setting Depth from the drop down list.
- Select the Soil Type from the options provided
- Select whether there is Unstabilised or Stabilised Backfill.
- Select whether the pole is a New Pole or is already In Service.
- If In Service is selected then enter the Calculated Pole Working Strength and select either No Load Change or Load Change.
- Select the Region in which the pole is situated, either Regions A & B or Region C.
- Click the Calculate Pole Tip Loads button to calculate and display the Allowable Pole Tip Load under limit state and sustained load conditions.

Using the Allowable Pole Tip Loads Program (Enter Version):

- Enter the Pole Details, consisting of the Pole Length, Pole Strength, Diameter at Pole Tip, Diameter 2m from Pole Butt and Setting Depth.
- Input the Soil Details, including the Passive Soil Reaction per unit depth and selecting either Stabilised Backfill or Unstabilised Backfill
- Enter the Operating Conditions, consisting of the Pole Wind Pressure (1300Pa for Region A and B or 1700Pa for Region C).
Click the **Calculate Pole Tip Loads** button to calculate and display the Allowable Pole Tip Load under limit state and sustained load conditions.

15.5.3 Assumptions

- The poles are of strength group S2 as the values for the pole tip diameters and the diameters 2m from the butt of the pole are that of pole strength group S2. The allowable foundation loads for pole strength group S1 will be marginally less and allowable foundation loads for pole strength group S3 will be marginally greater.
- When the option of stabilised backfill is chosen the average below ground diameter is increased by 0.1m to account for the stabilised backfill.
- As defined in Table C.1 of C(b)1, “**Good**” soil is well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage with a passive soil reaction per unit depth of 600kPa/m; “**Medium**” soil is compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable surface water drainage with a passive soil reaction per unit depth of 300kPa/m; “**Poor**” soil is soft clay, poorly compacted sand and soil that tend to absorb large amounts of water (excluding slush) with a passive soil reaction per unit depth of 150kPa/m.

15.6 Crossarm Design

15.6.1 Overview

The program is designed to calculate the allowable weight span for intermediate, strain and termination constructions under Limit State, Sustained and Maintenance conditions based on the strength of both the crossarm and the bolted joint.

The allowable weight span is calculated with reference to AS1720.1-1997 Timber Structures Part 1: Design Methods and using the following equations:

- **Weight of Conductor**
 \[
 \text{Weight of Conductor} = \text{Load Factor} \times \text{Conductor Weight (kg/km)} \times \text{Allowable Weight Span (m)} \times 9.81 \times 10^{-3}
 \]

- **Transverse Conductor Load**
 \[
 \text{Transverse Conductor Load} = \text{Load Factor} \times \text{Conductor Tension} \times \sin(0.5 \times \text{Angle of Deviation} \times \pi / 180)
 \]

- **Transverse Wind Load**
 \[
 \text{Transverse Wind Load} = \text{Wind Span} \times \text{Wind Pressure} \times \text{Conductor Diameter (m)}
 \]

- **Longitudinal Conductor Load**
 \[
 \text{Longitudinal Conductor Load} = \text{Load Factor} \times \text{Conductor Tension} \times \cos(0.5 \times \text{Angle of Deviation} \times \pi / 180) \times \text{Longitudinal Tension Component}
 \]

- **X-Arm Weight**
 \[
 \text{X-Arm Weight} = (1100 \times (\text{x-arm length (mm)} / 2000) \times (\text{x-arm width (mm)} / 1000) \times (\text{x-arm depth (mm)} / 1000) + \text{Insulator Weight (N)}) \times \text{Load Factor}
 \]

- **Vertical Bending Moments**
 \[
 \text{Vertical Bending Moments} = (\text{Weight of Conductor} \times \text{Distance between application point and pole CL}) + (\text{Transverse Conductor Load} \times \text{Distance between application point and x-arm CL}) + (\text{Transverse Wind Load} \times \text{Distance between application point and x-arm CL}) + (\text{X-Arm Weight} \times \text{Distance between application point and pole CL} \times \text{No. X-Arms}) + (\text{Wt of Men and Equipment} \times \text{Distance between application point and pole CL})
 \]

- **Horizontal Bending Moments**
 \[
 \text{Horizontal Bending Moments} = \text{(Longitudinal Load} \times \text{Distance between application point and pole CL})
 \]

- **Stress due to Vertical Bending Moments**
 \[
 \text{Stress due to Vertical Bending Moments} = \text{Vertical Bending Moments} \times (\text{x-arm depth (mm)} / 2000) / (I_x \times \text{No. X-Arms} \times 10^6)
 \]
Stress due to Horizontal Bending Moments = Horizontal Bending Moments x (x-arm width (mm) / 2000) / (I_y x No. X-Arms x 10^6)

Stress due to Tension = (Transverse Conductor Load + Transverse Wind Load) / (x-arm width (mm) x (x-arm depth (mm) – hole diameter (mm)))

Extreme Fibre Stress in Bending = Stress due to Vertical Bending Moments + Stress due to Horizontal Bending Moments

Combined bending and tension (AS1720.1-1997 Clause 3.6.2) = Vertical Bending Moments / (Design Timber Stress in Bending x Z_x x 10^6) + Horizontal Bending Moments / (Design Timber Stress in Bending x Z_y x 10^6) + Stress due to Tension / Design Timber Stress in Tension <= 1

The program is designed with the option of selecting either a single or double crossarm construction for both Strain and Termination constructions, and either a flat or delta construction for the Intermediate construction. There is the option of choosing a particular crossarm size according the voltage of the conductor, or entering in the data for a different crossarm size.

The minimum weight span between limit state, sustained and maintenance conditions is displayed as the allowable weight span for the selected crossarm.

15.7 Crossarm Design Program

A sheet number is provided in each sheet for labelling purposes.

15.7.1 To use the program

- Select a Conductor by clicking the Select Conductor button.
- Select the Line Voltage of the conductor.
- Select the Stringing Condition from the drop down list. If an unlisted value is required type the Stringing Tension in the drop down list.
- Enter the Ruling Span (MES) in the corresponding textbox.
- Enter the Wind Span in the corresponding textbox
- Enter the Deviation Angle in the corresponding space textbox
- Select the Region in which the pole is situated, either Regions A & B or Region C.
- Select an Intermediate, Angle, Strain or Termination crossarm construction.
- Select the Construction Type or No. of Crossarms from the drop down list.
- Select the Crossarm Size from the drop down list. If Other is selected, type the Crossarm Length, Width and Depth in the corresponding textboxes.
- Select Insulator Type from the drop down list.
- Click the Calculate button to calculate and display the Allowable Weight Span for the crossarm.

15.7.2 Assumptions

- The Longitudinal Tension Component of 5% does not apply to the Termination crossarm.
- The Longitudinal Tension Component of 5% does not apply to the Strain crossarm under the Maintenance load condition.
- For the Termination crossarm, an allowance is made for the load due to the conductor weight to be supported by one crossarm only, even if there is a double crossarm.
- Load factors are listed in the “Crossarm Design” section of this standard.
- Design Timber Stresses are listed in the “Crossarm Design” section of this standard.
- The Weight of Men and Equipment (listed in the “Crossarm Design” section of this standard) is only taken into account under the Maintenance load conditions.
The bolted joint is in accordance with AS1720.1 Section 4.4, specifically Equation 4.4(3), using joint group J2.

The Transverse Wind Load is only taken into account under Limit State and Maintenance load conditions.

Loading on the pin insulators is not taken into account. For deviation angle limits on the pin insulators, refer to the table in the “Insulators” section of this standard.

15.8 Allowable Wind Span Program

15.8.1 Overview

The program is designed to calculate the allowable wind span under limit state load and checks the condition of the pole under sustained load for standard crossarm constructions. It takes into account the transverse loads due to wind pressures and deviation angle on the conductor. It also displays appropriate messages according to the design parameters entered.

This version of the program integrates the “Allowable Pole Tip Loads” program and calculates this on the background prior to calculating the allowable wind span.

The program uses the following calculations:

For conductor attached to the pole:

\[\text{Transverse Deviation Angle Load on the Conductors} = 2 \times \sin \left(\frac{\text{Deviation Angle} \times \theta}{2 \times 180} \right) \times \text{Conductor Tension} \times 1 \]

\[\text{Transverse Wind Load on the Conductors} = \text{Wind Span} \times \text{Conductor Diameter} \times \text{Wind Pressure} \times 1 \]

For conductors attached to the crossarm:

\[\text{Transverse Deviation Angle Load on the Conductors} = 2 \times \sin \left(\frac{\text{Deviation Angle} \times \theta}{2 \times 180} \right) \times \text{Conductor Tension} \times (\text{No. of conductors} - 1) \]

\[\text{Transverse Wind Load on the Conductors} = \text{Wind Span} \times \text{Conductor Diameter} \times \text{Wind Pressure} \times (\text{No. of conductors} - 1) \]

Referred to the Pole Tip:

\[\text{Transverse Deviation Angle Load Referred to the Pole Tip} = \frac{(\text{Transverse Deviation Angle Load on the Conductor attached to the Pole} \times \text{Height from Ground to Conductor attached to the Pole}) + (\text{Transverse Deviation Angle Load on the Conductors attached to the Crossarm} \times \text{Height from Ground to Conductors attached to the Crossarm})}{\text{Pole Height Above Ground}} \]

\[\text{Transverse Wind Load Referred to the Pole Tip} = \frac{(\text{Transverse Wind Load on the Conductor attached to the Pole} \times \text{Height from Ground to Conductor attached to the Pole}) + (\text{Transverse Wind Load on the Conductors attached to the Crossarm} \times \text{Height from Ground to Conductors attached to the Crossarm})}{\text{Pole Height Above Ground}} \]

For subsidiary LV conductor:

\[\text{Transverse Deviation Angle Load on the Conductor} = 2 \times \sin \left(\frac{\text{Deviation Angle} \times \theta}{2 \times 180} \right) \times \text{Conductor Tension} \]

\[\text{Transverse Wind Load on the Conductors} = \text{Wind Span} \times \text{Conductor Diameter} \times \text{Wind Pressure} \]
Loads referred to pole tip:

Transverse Deviation Angle Load Referred to the Pole Tip

\[
\text{Transverse Deviation Angle Load} = \frac{\text{Transverse Deviation Angle Load on the Conductor} \times \text{Height from Ground to LV Conductor}}{\text{Pole Height Above Ground}}
\]

Transverse Wind Load Referred to the Pole Tip

\[
\text{Transverse Wind Load} = \frac{\text{Transverse Wind Load on the Conductor} \times \text{Height from Ground to LV Conductor}}{h}
\]

Service Load Referred to the Pole Tip

\[
\text{Service Load} = \frac{\text{LV Service Load} \times \text{Height from Ground to LV Conductor}}{\text{Pole Height Above Ground}}
\]

The **Total Limit State Load on the Pole** is calculated as follows:

\[
\text{Total Load} = \text{Transverse Deviation Angle Load (under limit state load conditions) Referred to the Pole Tip (HV)} + \text{Transverse Wind Load (under limit state load conditions) Referred to the Pole Tip (HV)} + \text{Service Load (under limit state load conditions) Referred to the Pole Tip (LV)} + \text{Transverse Deviation Angle Load (under limit state load conditions) Referred to the Pole Tip (LV)} + \text{Transverse Wind Load (under limit state load conditions) Referred to the Pole Tip (LV)}
\]

The **Total Sustained Load on the Pole** is calculated as follows:

\[
\text{Total Load} = \text{Transverse Deviation Angle Load (under sustained load conditions) Referred to the Pole Tip (HV)} + \text{Service Load (under sustained load conditions) Referred to the Pole Tip (LV)} + \text{Transverse Deviation Angle Load (under sustained load conditions) Referred to the Pole Tip (LV)}
\]

The total loads on the pole, limit state and sustained, should not exceed the net allowable pole tip loads entered, which are the loads calculated from the “Allowable Pole Tip Loads” program.

The transition span of the conductor, depending on the region selected, is taken into account. If the ruling span exceeds the transition span, the tension of the conductor will be limited. This may also limit the allowable wind span. In such instances, the initial conditions when performing the tension change operation are the limit state conditions for the selected region instead of the selected stringing conditions.

The program allows the allowable wind span to be calculated by either selecting conditions from drop down list or by entering all relevant data into the spaces provided. This is contained in two separate sheets, entitled **Select Version**, to select conditions from drop down lists, and **Enter Version**, to enter all relevant data into the spaces provided.

15.8.2 To use the program

- Under Allowable Wind Span on the main form choose the **Select** or **Enter** button.

Using Allowable Wind Span Program (Select Version):

- Select a Conductor by clicking the **Select Conductor** button.
- Select the **Number of Phases**.
- Select the **Stringing Tension** from the drop down list. If an unlisted value is required type the **Stringing Tension** in the drop down list.
- Enter the **Ruling Span** in the corresponding text box.
- Enter the **Deviation Angle** in the corresponding text box.
- Select the **Region** in which the construction is situated.
- Select the **Pole Length** from the drop down list.
- Select the **Pole Strength** from the drop down list.
- Select the **Setting Depth** from the drop down list.
- Select the **Soil Type** from the options provided.
Select the Backfill Type from the options provided.
Select the Line Voltage of the conductor.
Select the Construction Type from the drop down list.
If applicable select the Crossarm Height from the drop down list (intermediate delta only).
Select whether to Allow for Subsidiary LV ABC
If applicable select the LVABC Conductor Type from the drop down list.
If applicable select the LVABC Stringing Condition from the drop down list.
Select whether to Allow for LV ABC Service
Click the Calculate Wind Span button to calculate and display the Allowable Wind Span and the limiting conditions.

Using Allowable Wind Span Program (Enter Version):
- Enter the Pole Details, consisting of the Pole Length and Setting Depth.
- Enter the Net Allowable Pole Tip Loads for Limit State and Sustained load conditions.
- Enter the Operating Conditions, consisting of Limit State Wind Pressure on Conductors.
- Enter up to six sets of Conductor Details, including Limit State Conductor Tension, Sustained Conductor Tension, RL from Pole Tip, Deviation Angle, No. of Conductors at the particular RL and Conductor Diameter.
- Click the Calculate Wind Span button to calculate and display the Allowable Wind Span.

15.8.3 Assumptions
- For the Intermediate constructions where a pin insulator is used, the depth of the crossarm is 100mm in all instances.
- The transverse load for a service (if applied) is 1.5kN under limit state conditions and 0.15066kN under sustained load conditions.
- The point of attachment for a LV conductor is 2m below the HV crossarm bolt, or in the case of a S.W.E.R. construction, 2m below the pole tip. If there are two LV circuits, the separation between them is 0.3m. These separations are listed in the “Layout Clearances” section of this standard.
- In the Wind Span Program (Enter Version) where the RL from the pole tip is to be entered, it should be noted that in instances where the conductor is below the pole tip a positive number should be entered and in instances where the conductor is above the pole tip, a negative number should be entered.
- The Wind Span Program (Enter Version) does not take the transition span of the conductor into account.

15.9 Maximum Span – Ground Clearance Limitation Program

15.9.1 Overview
The program is designed to calculate the maximum span for a chosen construction to ensure that the minimum ground clearance limit is not exceeded.

The maximum span for ground clearance is calculated in accordance with C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Appendix E.

The following equations are used to find the maximum span:

\[D = \frac{W^2}{8T}, \quad C = \frac{T}{W}, \quad x_1 = C \tanh \left(\frac{h}{S} \right) - \frac{L}{2} \]
\[
S = \sqrt{\left(2C \sinh \frac{L}{2C}\right)^2 + h^2}, \quad y_1 = C \left(\cosh \frac{x_1}{C} - 1\right)
\]

Where:
- \(D\) = conductor sag (m)
- \(W\) = weight of conductor (N/m)
- \(L\) = actual span length (m)
- \(T\) = tension (N)
- \(C\) = catenary constant (m)
- \(x_1\) = horizontal distance between the lowest conductor support and the point of minimum ground clearance (m)
- \(H\) = height difference between conductor supports (m)
- \(S\) = stressed conductor length (m)
- \(y_1\) = vertical distance between the lowest conductor support and the point of minimum ground clearance (m)

The conductor transition span, depending on the region selected is always taken into account. If the ruling span exceeds the transition span, the tension of the conductor under the selected conditions will be limited. In such instances, the limitation boundary is for limit state conditions applicable to the selected region instead of the selected stringing conditions.

The program is designed so that a different pole construction can be chosen at each end of the span i.e. different crossarm construction, pole height or setting depth. There is an option given to select the minimum ground clearance from either the standard clearance for the construction or another, which can be entered.

15.9.2 To use the program

- Under Maximum Span on the main form choose the Select button.
- Select a Conductor by clicking the Select Conductor button.
- Select the Line Voltage of the conductor
- Select the Region in which the construction is situated from the options available
- Select the Layout Temperature from the drop down list.
- Select the Ground Clearance from the drop down list.
- Select the Stringing Tension from the drop down list.
- Type the Ruling Span (MES) in the corresponding space (this should be selected) and press Enter.
- Select whether to Allow for subsidiary LV ABC conductor
 - Select the Conductor Type for the LV Conductor from the drop down list.
 - Select the Stringing Condition of the LV Conductor from the drop down list.

For Poles 1 and 2:

- Select the Pole Length from the drop down list.
- Select the Setting Depth from the drop down list.
- Select the Construction Type from the drop down list.
- If Other is selected, enter the Distance from Pole Top to Lowest Conductor.
- Select the Crossarm Height from the pole tip from the drop down list.
- Click the Calculate button to calculate and display the maximum span limited by the ground clearance.

15.9.3 Assumptions

- For the Intermediate crossarms where a pin insulator is used, the depth of the crossarm is 100mm in all instances.
- The foundation is sufficient to support full pole strength utilisation.
The point of attachment for the LV conductor is 2m below the HV crossarm bolt, or in the case of a S.W.E.R construction, 2m below the pole tip. If there are two LV circuits, the separation between them is 0.3m. These separations are listed in the “Layout Clearances” section of this standard.

The standard minimum ground clearance for a HV conductor is 6.0m and for a subsidiary LV conductor is 5.8m.

The layout temperature for HV conductors in urban areas is 75°C and in rural areas is 60°C and for LV conductors is 80°C.

15.10 Allowable Weight Span Program

15.10.1 Overview

The program is designed to calculate the weight span of a particular construction, either a terminating span or multiple spans. In the case of multiple spans, the weight span for Pole 2 is calculated given the details of the spans on either side, as shown below.

![Figure 15-1 – Multiple Spans](image)

The weight span for Pole 2 is calculated using the following equations:

- **Straight Line RL at P3** = \(RL_1 + (RL_3 - RL_1) \times (\text{Span 1}/(\text{Span 1} + \text{Span 2})) \)
- **Distance Below Top of P2** = \(RL_2 - \text{Straight Line RL at P3} \)
- **Catenary Constant** = Tension (N) / Weight (N/m)
- **Pole 2 Wind Span** = \((\text{Span 1} + \text{Span 2}) / 2 \)
- **Sag (Span 1)** = \((\text{Span 1})^2 / (8 \times \text{Catenary Constant}) \)
- **Sag (Span 2)** = \((\text{Span 2})^2 / (8 \times \text{Catenary Constant}) \)
- **Pole 2 Weight Span** = \((1 + (2 \times \text{Distance Below Top of P2} \times \text{Catenary Constant}) / (\text{Span 1} \times \text{Span 2}) \times \text{Pole 2 Wind Span}) \)

The program allows the weight span to be calculated either by selecting conditions from drop down lists or by entering all relevant data. This is contained in two separate programs. Either the **Select Version** or the **Enter Version** can be opened by pressing the appropriate button on the main menu.

The Multiple Span Select part of the program is designed so that a different pole construction can be selected for each pole ie. different RL at each pole base, pole length, setting depth and construction type. The **Multiple Span Enter** program is designed so that selections of pole construction need not be made. The Conductor RL for each pole is entered instead.
For both the Multiple Span Enter and Multiple Span Select versions, the weight span under the Limit State, Sustained and Maintenance load conditions is calculated as is the weight of the conductor at Pole 2 under each load condition.

In accordance with C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Appendix E the following equations are used to calculate the weight span for a terminating span using catenary model:

\[
\text{Catenary Constant} = \frac{\text{Tension (N)}}{\text{Weight (N/m)}}
\]

\[
h = \text{height difference between conductor RL}
\]

\[
x_2 = \text{Catenary Constant} \times \sin h + \frac{1}{x_1} \left(\frac{h}{2 \times \text{Catenary Constant}} \right) + \frac{\text{Span Length}}{2}
\]

The program allows the weight span for a terminating span to be calculated either by selecting conditions from drop down lists or entering all relevant data into spaces provided. This is contained in separate programs, entitled Terminating Span Select, to select conditions from drop down lists, and Terminating Span Enter, to enter all relevant data into spaces provided.

Like the Multiple Span Select and Multiple Span Enter versions, the Terminating Span Select program is designed so that a different pole construction can be selected for each pole i.e. different RL at each pole base, pole length, setting depth and construction type. The Terminating Span Enter program is designed so that selection of pole construction need not be made. The Conductor RL for each pole is entered instead.

For both the Terminating Span Enter and Terminating Span Select sheets, the weight span under the Limit State, Sustained and Maintenance load conditions is calculated as is the weight of the conductor at the terminating pole under each load condition.

The conductor transition span, depending on the region selected is always taken into account. If the ruling span exceeds the transition span, the tension of the conductor under the selected conditions will be limited. In such instances, the limitation boundary is for limit state conditions applicable for the selected region instead of the selected stringing conditions. This will limit the weight span and the conductor weight at the point specified.

15.10.2 To use the program

- Under Allowable Weight Span on the main form choose the Select or Enter button.

Using Weight Span: Multiple Span Program (Select Version):

- Select a Conductor by clicking the Select Conductor button.
- Select the Stringing Condition from the drop down list.
- Select the Region from the options available.
- Select the Line Voltage of the conductor
- Enter the Ruling Span (MES) in the corresponding textbox
- Type the Span 1 in the corresponding textbox
- Type the Span 2 in the corresponding textbox

For Poles 1, 2 and 3:

- Enter the RL at Pole Base in the corresponding textbox
- Select the Pole Length from the drop down list.
- Select the Setting Depth from the drop down list.
- Select the Construction Type from the drop down list.
Click the Calculate button to calculate and display the Weight Span for Pole 2 under limit state, sustained and maintenance load conditions and the conductor weight at the insulator.

Using Weight Span: Multiple Span Program (Enter Version):
- Manually input the Conductor Data, consisting of Overall Diameter, Total Sectional Area, Calculated Breaking Load, Unit Mass, Final Modulus of Elasticity and Coefficient of Linear Expansion in the text boxes provided.
- Alternatively select a Conductor by clicking the Select Conductor button.
- Select either Ergon Standard conductors or Ergon ALL conductors.
- Select Conductor Type from the drop down list – only valid for Ergon ALL conductors.
- Select the Conductor Description from the drop down list.
- Enter the Operating Conditions, consisting of Initial Tension, Initial Pressure, Initial Temperature, Final Pressure, and Final Temperature.
- Enter the Span Details, consisting of Span 1, Span 2 and Ruling Span (MES).
- Enter the Stringing Condition, consisting of the
- Enter the Conductor RL at Pole 1.
- Enter the Conductor RL at Pole 2.
- Enter the Conductor RL at Pole 3.
- Click the Calculate button to calculate and display the Weight Span for Pole 2 under the limit state, sustained and maintenance load conditions and the conductor weight at the insulator.

Using Weight Span: Terminating Span Program (Select Version):
- Select a Conductor by clicking the Select Conductor button.
- Select the Stringing Condition from the drop down list.
- Select the Region from the options available.
- Select the Line Voltage of the conductor
- Enter the Ruling Span (MES) in the corresponding textbox
- Enter the Actual Span in the corresponding textbox

15.11 Weight Span Program

For the Non-terminating and Terminating Pole:
- Enter the RL at Pole Base in the corresponding textbox
- Select the Pole Length from the drop down list.
- Select the Setting Depth from the drop down list.
- Select the Construction Type from the drop down list.
- Click the Calculate button to calculate and display the Weight Span for the Terminating Pole under the limit state, sustained and maintenance load conditions and the conductor weight at the insulator.

Using Weight Span: Terminating Span Program (Enter Version):
- Manually input the Conductor Data, consisting of Overall Diameter, Total Sectional Area, Calculated Breaking Load, Unit Mass, Final Modulus of Elasticity and Coefficient of Linear Expansion in the text boxes provided.
- Alternatively select a Conductor by clicking the Select Conductor button.
- Enter the Non-terminating Pole Conductor RL.
- Enter the Terminating Pole Conductor RL.
- Enter the Operating Conditions, consisting of Initial Tension, Initial Pressure, Initial Temperature, Final Pressure, and Final Temperature.
- Enter the Span Details, consisting of the Actual Span and Ruling Span (MES).
Click the Calculate button to calculate and display the Weight Span for the Terminating Pole under the limit state, sustained and maintenance load conditions and the conductor weight at the crossarm.

15.11.1 Assumptions
- For the Intermediate constructions where a pin insulator is used, the depth of the crossarm is 100mm in all instances.
- The enter sheets do not take the transition span of the conductor into account.
- The weight span and weight is calculated for the highest conductor on the pole.

15.12 Ruling Span (MES) Program

15.12.1 Overview
This program is designed to calculate the mean equivalent span (MES), or ruling span, and the running span for a number of entered span lengths.

The mean equivalent span is calculated in accordance with C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Appendix E.

Equation (3) states that the ruling span is calculated using:

\[
L_r = \sqrt[3]{\frac{\sum L_i^n}{\sum L_i}}
\]

Where:
- \(L_r\) = mean equivalent span
- \(L_i\) = horizontal span length of span \(i\)
- \(n\) = number of spans between strain structures.

This program allows up to 90 individual span lengths to be entered in the spaces provided to calculate the mean equivalent span and running span.

15.12.2 To use the program
- Enter the relevant Span Lengths in the boxes provided.
- Click the Calculate button to calculate and display the Mean Equivalent Span and the Running Span for the Span Lengths entered.

15.12.3 Assumptions
- Equation (3) applies for lines in flat to undulating terrain. In very mountainous terrain with large differences in elevation between structures, use of Equation (4) in Appendix E of C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines may be required.

15.13 Phase Separation Program
15.13.1 Overview

The program is designed to check the risk of conductors clashing in constructions such as shown below:

Figure 15-2 – Delta to Vertical Conductor Configuration

The colour, Red, Yellow and Blue as shown above represent each conductor and the program shows a graphical representation of the conductor configuration.

The program takes the inputted data and performs the following calculations in order to find whether the construction is suitable using the following equations:

\[L_{ACT} = \sqrt{(Y_2 - Y_1)^2 + (X_2 - X_1)^2 + (Z_2 - Z_1)^2} \]

\[\text{Cos}X = \frac{Y_2 - Y_1}{L_{ACT}} \]

\[\text{Cos}Y = \frac{X_2 - X_1}{L_{ACT}} \]

\[\text{Cos}Z = \frac{Z_2 - Z_1}{L_{ACT}} \]

Where:

\[L_{ACT} = \text{actual conductor length (m)} \]

\[X_1 \text{ and } X_2 = \text{x-coordinates for structures 1 and 2} \]

\[Y_1 \text{ and } Y_2 = \text{y-coordinates for structures 1 and 2} \]

(These calculations are performed for each conductor individually.)

\[\text{Cos} \tau = \text{Cos}X_1 \times \text{Cos}X_2 + \text{Cos}Y_1 \times \text{Cos}Y_2 + \text{Cos}Z_1 \times \text{Cos}Z_2 \]

\[\tau(\text{rad}) = ACos(\text{Cos} \tau) \]

\[\tau(\text{o}) = \tau(\text{rad}) \times \frac{180}{\pi} \]

\[\text{Sin} \tau = \text{Sin} \tau(\text{rad}) \]

Where:

\[\text{Cos}X_1 \text{ and } \text{Cos}X_2 = \text{value for Cos}X \text{ for conductors 1 and 2} \]

\[\text{Cos}Y_1 \text{ and } \text{Cos}Y_2 = \text{value for Cos}Y \text{ for conductors 1 and 2} \]

\[\text{Cos}Z_1 \text{ and } \text{Cos}Z_2 = \text{value for Cos}Z \text{ for conductors 1 and 2} \]

(These calculations are performed for each conductor in combination with each other conductor, ie. Red-Yellow, Yellow-Blue and Blue-Red.)

With the use of matrices with the following configuration:

\[
\begin{bmatrix}
Y_2 - Y_1 & X_2 - X_1 & Z_2 - Z_1 \\
\text{Cos}X_1 & \text{Cos}Y_1 & \text{Cos}Z_1 \\
\text{Cos}X_2 & \text{Cos}Y_2 & \text{Cos}Z_2 \\
\end{bmatrix}
\]
It is known whether the conductors are co-planar if the determinant of the matrix is equal to zero.

(These calculations are performed for each conductor in combination with each other conductor, ie. Red-Yellow, Yellow-Blue and Blue-Red.)

The following equations are used in order to find the vertical and horizontal separations at mid span:

\[T = \frac{L_{ACT}}{2} \]

(These calculations are performed for each conductor individually.)

\[\Delta x = |x_1 - x_2| \]
\[\Delta y = |y_1 - y_2| \]
\[\Delta z = |z_1 - z_2| \]

(These calculations are performed for each conductor in combination with each other conductor, ie. Red-Yellow, Yellow-Blue and Blue-Red.)

\[\Delta y = \text{Transverse Mid Span Separation} \]
\[\Delta x = \text{Vertical Mid Span Separation} \]
\[z_1 = \text{Z at Mid Span} \]

The Extra Clearance between the conductors is calculated in accordance with C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Clause 9.3.

\[\%\text{Extra} = \frac{\sqrt{\Delta y^2 + (1.2 \times \Delta x)^2}}{\frac{\text{Voltage}}{150} + 0.4 \times \sqrt{\text{Sag} + \text{Suspension Insulator Length}}} \times 100 \]

(These calculations are performed for each conductor in combination with each other conductor, ie. Red-Yellow, Yellow-Blue and Blue-Red.)

For the construction to be suitable, the Extra Clearance as a percentage needs to be greater than 100%.

Also, if the value of \(\cos \tau \) is equal to zero for two conductors then those conductors are normal to each other and if the values for \(\cos X \), \(\cos Y \) and \(\cos Z \) are equal for two conductors then those conductors are parallel to each other. The angle between the conductors is equal to \(\tau (\degree) \).

If the situation is suitable, then a table containing the Transverse Mid Span Separation, the Vertical Mid Span Separation, the Longitudinal Distance at Mid Span, the Extra Clearance and the Angle Between the Conductors will be displayed, as will indications as to whether the conductors are Co-planar, Normal and Parallel to each other.

If the situation is unsuitable, this will be displayed.

15.13.2 To use the program

- Select a Conductor by clicking the Select Conductor button.
- Select a Stringing Tension from the drop down list
- Enter the Actual Span Length in the corresponding textbox
15.14 Conductor Sagging Program

15.14.1 Overview

The program is designed to calculate the vertical sag of a nominated conductor under specified conditions for a number of different temperatures ranging from 5°C to 40°C in 5° increments and also 50°C, 60°C, 75°C and 80°C and up to four actual span lengths. The tension under which this sag is calculated is also displayed.

The sag is calculated from the following equation:

\[S_v = \frac{W \times L^2}{8 \times T} \]

Where:
- \(S_v \) = vertical sag at mid span (m)
- \(W \) = weight of conductor (N/m)
- \(L \) = actual span length (m)
- \(T \) = final tension (N)

The tension under the operating conditions is calculated by solving the equation below for \(T_o \):

\[
\left(\frac{c_i \cdot W \cdot I}{T_o} \right)^2 - T_o = \left(\frac{c_i \cdot W_o \cdot I}{T_o} \right)^2 - T_o + c_2 \cdot t
\]

Where: \(c_i = \sqrt{\frac{EA}{24}} \) and \(c_2 = \alpha EA \)

\(I \) = ruling span (MES) (m)
\(T \) = tension under the initial conditions (N)
\(w \) = weight of conductor under initial conditions (N/m)
\(T_o \) = tension under the operating conditions (N)
\(w_o \) = weight of conductor under operating conditions (N/m)
\(t \) = temperature under initial conditions less the temperature under the operating conditions (°C)
\(E \) = final modulus of elasticity (Pa)
\(A \) = total sectional area of the conductor (m²)
\(\alpha \) = co-efficient of linear expansion (°C⁻¹)

The conductor transition span, depending on the region selected is always taken into account. If the ruling span exceeds the transition span, the tension of the conductor under the selected
conditions will be limited. In such instances, the limitation boundary is for limit state conditions applicable for the selected region instead of the selected stringing conditions.

The program has an allowance for temperature correction to allow for inelastic stretch, which applies to specific types of conductors. The Conductor Sag Enter Version requires this value to be entered; while the Conductor Sag Select Version requires the user to select whether or not temperature correction is to be allowed and it assigns the value based on the conductor type and stringing condition.

The program allows the conductor sag to be calculated either by selecting conditions from drop down lists or by entering all relevant data. This is contained in two separate programs. Either the Select Version or the Enter Version can be opened by pressing the appropriate button on the main menu.

15.14.2 To use the program

- Under Conductor Sagging on the main form choose the Select or Enter button.

Using Conductor Sagging Program (Select Version):

- Select a Conductor by clicking the Select Conductor button.
- Select the Stringing Tension from the drop down list. If an unlisted value is required type the Stringing Tension in the drop down list.
- Enter the Ruling Span (MES), Actual Span 1, Actual Span 2, Actual Span 3 and Actual Span 4 in the corresponding text boxes.
- Select whether to allow for Temperature Correction.
- Select the Region in which the construction is situated.
- Click the Calculate button to calculate and display the Sag and Tension for the nominated conditions.

Using Conductor Sagging Program (Enter Version):

- Manually input the Conductor Data, consisting of Overall Diameter, Total Sectional Area, Calculated Breaking Load, Unit Mass, Final Modulus of Elasticity and Coefficient of Linear Expansion in the text boxes provided.
- Alternatively select a Conductor by clicking the Select Conductor button.
- Enter the Span Details, consisting of Ruling Span (MES), Actual Span 1, Actual Span 2, Actual Span 3 and Actual Span 4.
- Input the Stringing Conditions, consisting of the Stringing Tension, the Wind Pressure at 15°C and the Conductor Type (LVABC or Bare Conductors).
- Input the Temperature Correction to allow for inelastic stretch.
- Click the Calculate button to calculate and display the Sag and Tension for the nominated conditions.

15.14.3 Assumptions

- The limit state conductor strength of bare conductors and LV ABC used for the transition span check are 72% and 40% respectively as listed in the “Conductor Design” section of this standard.
- The temperature corrections to allow for inelastic stretch are as follows:
 - SC conductors: 0°C
 - AAC conductors: 10°C @ 20%EDT
 - 5°C @ 10%EDT
 - AAAC conductors: 15°C
 - ACSR conductors: 10°C
 - Copper conductors: 5°C
 - LV ABC conductors: 0°C
15.15 Resultant Stay Load Program

15.15.1 Overview

The program is designed to calculate the resultant horizontal load carried by a stay, the direction of the stay, the pole strength utilisation for up to ten loads on a specified pole and recommends the suitable stay type.

The program requires the input of relevant data and performs the following calculation, as described in the “Stays” section of this standard, to find the resultant load, direction and pole strength utilisation:

\[
P = L \times \left(1 + \frac{3 \times b}{2 \times a}\right)
\]

Where:
- \(P \) = horizontal stay load
- \(L \) = termination or deviation load
- \(b \) = distance between \(L \) and \(P \)
- \(a \) = distance between \(P \) and the ground

(Each load is treated individually to find a required horizontal stay load.)

These individual loads are added vectorially to give a resultant load. The wind pressure on the pole at the stay attachment height is also taken into account having the same direction as the resultant load for worst case condition. The equation is given below.

\[
PR = \sqrt{(\sum P \sin \alpha)^2 + (\sum P \cos \alpha)^2} + W
\]

Where:
- \(PR \) = resultant horizontal load
- \(P \) = individual horizontal stay loads
- \(\alpha \) = direction of load relative to 0°
- \(W \) = wind pressure on the pole at the stay height

The direction of this load is calculated as follows:

\[
\theta = \arctan \frac{\sum P \sin \alpha}{\sum P \cos \alpha}
\]

with reference to the applicable quadrant that the loads are applied in. The direction of the ideal stay load is opposite to this, i.e. \(\theta + 180° \).

The pole is checked in bending under limit state and long duration conditions using the following calculation, as described in the “Stays” section of this standard:

\[
\sigma Z \geq \Sigma Lx + W_M
\]

Where:
- \(\Sigma \) = maximum allowable bending stress in pole
- \(Z \) = modulus of pole at stay attachment point
- \(D \) = pole diameter at stay attachment point
- \(\pi D^3/32 \) = modulus of pole at stay attachment point
- \(L \) = horizontal load applied to pole
- \(X \) = distance from load centre to stay attachment
The pole strength utilisation is found as a percentage as follows:

\[
\% \text{Utilisation} = \frac{\text{Bending due to loads above the stay}}{\text{Allowable Bending in the pole at the stay}} \times 100 \quad \text{(under Limit State and Sustained load conditions)}
\]

15.15.2 To use the program

- Select the **Pole Length** from the drop down list.
- Select the **Pole Strength** from the drop down list.
- Select the **Pole Setting Depth** from the drop down list.
- Select the **Region** from the option list.
- Select **Unstabilised** or **Stabilised Backfill** from the options provided.
- Select whether the pole is a **New Pole** or a pole already **In Service**.
- If the pole already **In Service** then enter the **Calculated Pole Working Strength** and select either **No Change In Tip Load** or **Change In Tip Load**.
- Select the **Soil Type** from the options provided.
- Select **Good to Medium Soil** or **Other Soils** from the options available.
- Select the **Stay Angle** from the drop down list. This option is only available for ground stay types.
- Enter the **stay position from pole tip**.
- Add **Limit State** and **Sustained** conductor loads using the **Tension Calculator**.
- Open the **Tension Calculator**, select a **Conductor**, enter the **Initial Tension** of the conductor, enter a **Ruling Span**, select a **Wind Region** and enter the **Number of Conductors**.
- Click **Calculate** to display conductor tensions. Finally add **Load** to the unstayed pole loads. Loads are entered in the first empty row.
- Enter the **Load Angle** and **Distance From Pole Tip** in the text boxes provided. Alternatively, enter the details of each **Horizontal Load** for both **Limit State** and **Sustained** conditions including its angle and position relative to the top of the pole – **positive** for loads below the pole and **negative** for loads above the pole.
- Click **Display Load Info** to check all conductor loads are correct.
- Click **Calculate** to calculate the resultant stay load.

The Resultant Horizontal Stay Load, the Ideal Stay Direction and the Pole Strength Utilisation at Point of the Stay Attachment under Sustained and Limit State Load Conditions will be displayed. Check that the pole strength utilisation for the input condition (either sustained or limit state) is less than 100%.

If an available stay that can handle the calculated horizontal loads, the program will recommend the type of stay required.

15.15.3 Assumptions

- Where the RL from the pole top for the applied load is to be entered, it should be noted that in instances where the conductor is below the pole top a positive figure should be entered and in instances where the conductor is above the pole top a negative figure should be entered.
- The calculation of the resultant load, \(P_R \), assumes that the bending moment occurring at a point one-third the height of the stay attachment above ground level is zero.
- The poles are of strength group S2 as the values for the pole tip diameter and the diameter 2m from the butt of the pole are that for poles of strength group S2.
The Design Stress in bending is that for poles of strength group S2, as listed in the “Poles” section of this standard.

The wind pressure on the pole is assumed to be in the same direction as the resultant conductor loads.

15.16 Unstayed Pole Program

15.16.1 Overview

The program is designed to calculate the load on the pole due to conductor tension and pole wind loading. The program has two parts. First it will calculate the net allowable pole tip load and secondly the resultant pole tip load. Compares the two values and decides whether the design meets C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines.

The program integrates the Net Allowable Pole Tip Loads program. It calculates the lower of the allowable tip loads determined by either the pole strength or the foundation strength after allowance for wind on the pole element. The limiting factor, either the pole or foundation strength, is displayed with the allowable pole tip load.

The allowable foundation loads are calculated based on C(b)1 Guidelines for Design and Maintenance of Overhead Distribution and Transmission Lines, Appendix C.

The allowable pole strengths are dependent on whether the pole is new or existing:
- For a **new pole** the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State and 0.2 for sustained loads.
- For an **existing pole with no change in tip load** the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State and 0.2 for sustained loads.
- For an **existing pole with a change in tip load** the allowable pole strengths are based on the ultimate pole strength factored by 0.72 for Limit State and 0.2 for sustained loads.

The relevant diameters are based on pole strength group S2. Knowing these diameters allow calculation for wind loading and foundation loads as provided by the following equations:

For Wind on Pole:
- **Diameter at ground**
 \[\frac{(D_B - D_T)}{(H - 2)(2 - J) + D_B} \]
- **Pole Centroid**
 \[\frac{(2 x D_T + D_G)}{(D_T + D_G)(h)} \]
- **Pole Taper**
 \[\frac{(D_2 - D_T)}{(H - 2)} \]
- **Area**
 \[(D_T + D_G)(h) \]
- **Wind on Pole (kN)**
 \[\frac{(Area \times Wind \ Pressure)}{1000} \]
- **Wind on Pole refer to pole tip (kN)**
 \[Wind \ on \ Pole \times Pole \ Centroid / h \]

For Foundation Loads
- **Average below ground Diameter**
 \[D_T + Pole \ Taper \times (h + J/2) \]
- **Maximum Tip Load to avoid over turning**
 \[\frac{(K \times 1.8 \times D \times J^3)}{(12 \times (h + 3/4) J)} \]
Maximum Tip Load to avoid overturning

\[P_o (\text{Sustained}) = \frac{(K \times 0.5 \times D \times J^3)}{(12 \times (h + \frac{3}{4}J))} \]

Where:
- \(D_T \) = pole tip diameter (m)
- \(D_G \) = diameter at ground level (m)
- \(D_B \) = diameter 2m from butt (m)
- \(D \) = average below ground diameter (m)
- \(J \) = setting depth (m)
- \(H \) = pole length (m)
- \(h \) = pole height above ground (m)
- \(K \) = passive soil reaction per unit depth (kPa/m)
- \(P_o \) = maximum tip load to avoid overturning (kN)

The limit state and sustained horizontal conductor loads entered are broken down into vector components. Each components are summed to give the total resultant horizontal loading referred to the pole tip. The formula below gives the equivalent horizontal pole tip load:

\[\text{Load}_{\text{pole tip}} = \frac{\text{Load}_{\text{applied}} \times L_{\text{point}}}{H} \]

Where:
- \(\text{Load}_{\text{applied}} \) = limit state or sustained load entered
- \(L_{\text{point}} \) = distance from pole tip to application point
- \(H \) = pole height above ground

The formula given below vectorially adds each horizontal load to give the equivalent resultant load:

\[P_R = \sqrt{(\Sigma P \sin \alpha)^2 + (\Sigma P \cos \alpha)^2} + W \]

Where:
- \(P_R \) = resultant horizontal load
- \(P \) = individual horizontal stay loads
- \(\alpha \) = direction of load relative to 0°
- \(W \) = wind pressure on the pole at the stay height

The direction of this load is calculated using the formula below with respect to the applicable quadrant that the loads are applied in:

\[\theta = \text{Arc tan} \left(\frac{\Sigma P \sin \alpha}{\Sigma P \cos \alpha} \right) \]

A sheet number is provided in each sheet for labelling purposes.

15.16.2 To use the program

- Select the Pole Height from the drop down list.
- Select the Pole Strength from the drop down list. (The pole strength is only used in the calculation of wind loads)
- Select the Setting Depth from the drop down list.
- Select the Region in which the pole is situated, either Regions A & B or Region C.
- Select Unstabilised or Stabilised Backfill from the options provided
- Select whether the pole is a New Pole or a pole already In Service
- If the pole already In Service then enter the Calculated Pole Working Strength and select either No Change In Tip Load or Change In Tip Load.
- Select the Soil Type from the options provided
• Add Limit State and Sustained conductor loads using the Tension Calculator.
• Open the Tension Calculator, Select a Conductor, enter the Initial Tension of the conductor, enter a Ruling Span, select a Wind Region and enter the Number of Conductors.
• Click Calculate conductor load to display conductor tensions. Finally Add Load to the unstayed pole loads. Loads are entered in the first empty row.
• Enter the Load Angle and Distance From Pole Tip in the text boxes provided.
• Alternatively, enter the details of each Horizontal Load for both Limit State and Sustained conditions including its angle and position relative to the top of the pole – positive for loads below the pole and negative for loads above the pole.
• Click the Calculate Unstayed Pole Load button to calculate, display the Allowable Pole Tip Load under limit state or sustained load conditions, the resultant horizontal load and direction of pole. A message will be displayed beside the calculated results stating if the design conditions according to the standards have been satisfied or not.
• Click Display Load Info to check all conductor loads are correct.
• To export the current scenario to the Resultant Stay Load Program. Click the Export to Result. Stay Load button.
• Alternatively, click the Clear Loads button to clear all the loads.

15.16.3 Assumptions

• The poles are of strength group S2 as the values for the pole tip diameter and the diameter 2m from the butt of the pole are that for poles of strength group S2. The allowable foundation loads for group S1 poles will be marginally less and the allowable foundation loads for group S3 poles will be marginally more.
• When the option of stabilised backfill is chosen, the average below ground diameter is increase by 0.1m to account for the stabilised backfill.
• As defined in Table C.1 of C(b)-1, "Good" soil is well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage with a passive soil reaction per unit depth of 600kPa/m; "Medium" soil is compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable surface water drainage with a passive soil reaction per unit depth of 300kPa/m; "Poor" soil is soft clay, poorly compacted sand and soil that tend to absorb large amounts of water (excluding slush) with a passive soil reaction per unit depth of 150kPa/m.
• The Design Stress in bending is that for poles of strength group S2, as listed in the “Poles” section of this standard.

15.17 Deviation Angles Program

15.17.1 Overview

This program is designed to calculate the range of deviation angles allowable for flying angle constructions. The range is calculated under 100Pa and 500Pa wind conditions with the wind load being in both the same direction and opposite directions to the deviation angle load.

Assuming that the construction is similar to the following,

![Figure 15-3 – Multiple Span Construction](image)

Ergon Energy Corporation Limited ABN 50 087 846 062
The following calculations are made and the equations are solved to find the range of allowable deviation angles based on the maximum allowable angle of swing for the given condition:

Straight Line RL at P3
\[RL3 = RL1 + (RL3 - RL1) \times \left(\frac{L_1}{L_1 + L_2} \right) \]

Distance Below Top of P2
\[RL2 = RL2 - \text{Straight Line RL at P3} \]

\[C = \frac{T}{W_C} \]

\[L_{\text{Wind}} \text{ (Pole 2)} = \frac{L_1 + L_2}{2} \]

\[L_{\text{Weight}} \text{ (Pole 2)} = \left(1 + \frac{2 \times \text{Distance Below Top of P2} \times C}{L_1 \times L_2} \right) \times L_{\text{Wind}} \text{ (Pole 2)} \]

\[\text{Transverse Deviation Angle Load on the Conductors} = 2 \times \sin \left(\frac{\theta}{360} \right) \times T \]

\[\text{Transverse Wind Load on the Conductors} = L_{\text{Wind}} \times d \times P \]

\[\text{Weight due to Conductor and Insulator} = L_{\text{Weight}} \times W_C + 0.5 \times W_I \]

\[\theta = \arctan \left(\frac{\text{Transverse Wind Load on the Conductors} \pm \text{Transverse Deviation Angle Load on the Conductors}}{\text{Weight due to Conductor and Insulator}} \right) \times \frac{180}{\pi} \]

(The ± denotes that for the wind load and deviation angle load in the same direction + is used and for the wind load and deviation angle load in opposite directions – is used.)

Where:
- \(L_1 \) = is the length of span 1 (m)
- \(L_2 \) = is the length of span 2 (m)
- \(C \) = catenary constant (m)
- \(T \) = conductor tension (N)
- \(W_C \) = conductor weight (N/m)
- \(L_{\text{Wind}} \) = wind span (m)
- \(L_{\text{Weight}} \) = weight span (m)
- \(\theta \) = deviation angle (°)
- \(d \) = conductor diameter (m)
- \(P \) = wind pressure (Pa)
- \(W_I \) = insulator weight (N)
- \(\Phi \) = swing angle (°)

The conductor transition span, depending on the operating conditions selected is always taken into account. If the ruling span exceeds the transition span, the tension of the conductor under the selected conditions will be limited. However, since this program calculates the range of allowable deviation loads under 100Pa and 500Pa wind conditions, the ruling span will not generally exceed the transition span. In such instances that it does, the initial conditions when performing the tension change operation are the allowable limit state conditions applicable instead of the selected stringing condition.

This program allows the range of allowable deviation angles to be calculated either by selecting conditions from drop down lists or entering all relevant data into the spaces provided. This is contained in two separate programs. Either the Select Version or the Enter Version can be opened by pressing the appropriate button on the main menu.
15.17.2 To use the program

- Under Deviation Angles on the main form choose the Select or Enter button.

Using Allowable Deviation Angles Program (Select Version):

- Select a Conductor by clicking the Select Conductor button.
- Select the Line Voltage of the conductor.
- Select the type of Insulator used from the drop down list.
- Select the Stringing Condition from the drop down list. If an unlisted value is required type the Stringing Tension in the drop down list.
- Enter the Ruling Span (MES) in the corresponding textbox.
- Enter the Span 1 in the corresponding textbox.
- Enter the Span 2 in the corresponding textbox.
- Enter the Conductor RL for Pole 1 in the corresponding textbox.
- Enter the Conductor RL for Pole 2 in the corresponding textbox.
- Enter the Conductor RL for Pole 3 in the corresponding textbox.
- Click the Calculate button to calculate and display the range of allowable deviation angles and the governing wind conditions.

Using Allowable Deviation Angles Program (Enter Version):

- Manually input the Conductor Data, consisting of Overall Diameter, Total Cross-sectional Area, Calculated Breaking Load, Unit Mass, Final Modulus of Elasticity and Coefficient of Linear Expansion in the text boxes provided.
- Alternatively select a Conductor by clicking the Select Conductor button.
- Input the Construction Details, consisting of the Voltage, Stringing Tension, Insulator Type and Insulator Weight.
- Input the Span Details, consisting of the Ruling Span (MES), Wind Span and Weight Span at 500Pa Wind Pressure and at 100Pa Wind Pressure.
- Click the Calculate button to calculate and display the range of allowable deviation angles and the governing wind conditions.

15.17.3 Assumptions

- The maximum allowable deviation angle for both 100Pa and 500Pa wind conditions is limited to 45°.
- The minimum allowable deviation angle for both 100Pa and 500Pa wind conditions is limited to 3°.
- The range of allowable deviation angles is the larger of the allowable deviation angles with the wind load and the deviation load in opposite directions under 100Pa and 500Pa wind conditions and the lesser of the allowable deviation angles with the wind load and the deviation load in the same direction under 100Pa and 500Pa wind conditions. The governing wind conditions relating the maximum and minimum of the range are displayed.
- The Weight Spans which need to be entered on the Deviation Angles Enter sheet can be calculated using the “Weight Span” program.
- Where a negative weight span is calculated or entered in the Deviation Angles sheets, the construction is deemed unsuitable for a flying angle construction as the allowable swing angles will be exceeded.
- The Deviation Angles Enter sheet does not take the transition span of the conductor into account.
16. APPENDIX B – STRINGING CHARTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x95 LVABC Slack Stringing 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3015</td>
</tr>
<tr>
<td>Urban 4x95 LVABC 6% CBL – 900 and 1200 Pa wind</td>
<td>3016</td>
</tr>
<tr>
<td>Semi-urban 4x95 LVABC 10% CBL – 900 and 1200 Pa wind</td>
<td>3033</td>
</tr>
<tr>
<td>2x95 LVABC Slack Stringing 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3006</td>
</tr>
<tr>
<td>Urban 2x95 LVABC 6% CBL – 900 and 1200 Pa wind</td>
<td>3017</td>
</tr>
<tr>
<td>Semi-urban 2x95 LVABC 10% CBL – 900 Pa wind</td>
<td>3026</td>
</tr>
<tr>
<td>Semi-urban 2x95 LVABC 10% CBL – 1200 Pa wind</td>
<td>3024</td>
</tr>
<tr>
<td>4x50 LVABC Slack Stringing 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3035</td>
</tr>
<tr>
<td>Urban 4x50 LVABC 6% CBL – 900 and 1200 Pa wind</td>
<td>3034</td>
</tr>
<tr>
<td>Semi-urban 4x50 LVABC 10% CBL – 900 Pa wind</td>
<td>3028</td>
</tr>
<tr>
<td>Semi-urban 4x50 LVABC 10% CBL – 1200 Pa wind</td>
<td>3026</td>
</tr>
<tr>
<td>2x50 LVABC Slack Stringing 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3018</td>
</tr>
<tr>
<td>Urban 2x50 LVABC 6% CBL – 900 Pa wind</td>
<td>3037</td>
</tr>
<tr>
<td>Urban 2x50 LVABC 10% CBL – 1200 Pa wind</td>
<td>3023</td>
</tr>
<tr>
<td>Semi-urban 2x50 LVABC 10% CBL – 900 Pa wind</td>
<td>3027</td>
</tr>
<tr>
<td>Semi-urban 2x50 LVABC 10% CBL – 1200 Pa wind</td>
<td>3025</td>
</tr>
<tr>
<td>Slack Stringing ‘Libra’ 7/3.00 AAC≈ 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3039</td>
</tr>
<tr>
<td>Slack Stringing ‘Mars’ 7/3.75 AAC≈ 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3158</td>
</tr>
<tr>
<td>Slack Stringing ‘Moon’ 7/4.75 AAC≈ 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3161</td>
</tr>
<tr>
<td>Slack Stringing ‘Pluto’ 19/3.75 AAC≈ 2.5% CBL – 900 and 1200 Pa wind</td>
<td>3164</td>
</tr>
<tr>
<td>Urban ‘Libra’ 7/3.00 AAC≈ 6% CBL – 900 and 1200 Pa wind</td>
<td>3156</td>
</tr>
<tr>
<td>Urban ‘Mars’ 7/3.75 AAC≈ 6% CBL – 900 and 1200 Pa wind</td>
<td>3159</td>
</tr>
<tr>
<td>Urban ‘Moon’ 7/4.75 AAC≈ 6% CBL – 900 and 1200 Pa wind</td>
<td>3162</td>
</tr>
<tr>
<td>Urban ‘Pluto’ 19/3.75 AAC≈ 6% CBL – 900 and 1200 Pa wind</td>
<td>3165</td>
</tr>
<tr>
<td>Semi-Urban ‘Libra’ 7/3.00 AAC≈ 10% CBL – 900 and 1200 Pa wind</td>
<td>3038</td>
</tr>
<tr>
<td>Semi-Urban ‘Mars’ 7/3.75 AAC≈ 10% CBL – 900 and 1200 Pa wind</td>
<td>3157</td>
</tr>
<tr>
<td>Semi-Urban ‘Moon’ 7/4.75 AAC≈ 10% CBL – 900 and 1200 Pa wind</td>
<td>3160</td>
</tr>
<tr>
<td>Semi-Urban ‘Pluto’ 19/3.75 AAC≈ 10% CBL – 900 and 1200 Pa wind</td>
<td>3163</td>
</tr>
<tr>
<td>Rural ‘Libra’ 7/3.00 AAC 20% CBL – 900 Pa wind</td>
<td>3002</td>
</tr>
<tr>
<td>Rural ‘Libra’ 7/3.00 AAC 20% CBL – 1200 Pa wind</td>
<td>3003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural ‘Mars’ 7/3.75 AAC 20% CBL – 900 Pa wind</td>
<td>3004</td>
</tr>
<tr>
<td>Rural ‘Mars’ 7/3.75 AAC 20% CBL – 1200 Pa wind</td>
<td>3005</td>
</tr>
<tr>
<td>Rural ‘Moon’ 7/4.75 AAC 20% CBL – 900 Pa wind</td>
<td>3008</td>
</tr>
<tr>
<td>Rural ‘Moon’ 7/4.75 AAC 20% CBL – 1200 Pa wind</td>
<td>3009</td>
</tr>
<tr>
<td>Rural ‘Pluto’ 19/3.75 AAC 20% CBL – 900 and 1200 Pa wind</td>
<td>3031</td>
</tr>
<tr>
<td>Rural ‘Fluorine’ 7/3.0 AAAC 1120 20% CBL – 900 Pa wind</td>
<td>3166</td>
</tr>
<tr>
<td>Rural ‘Fluorine’ 7/3.0 AAAC 1120 20% CBL – 1200 Pa wind</td>
<td>3167</td>
</tr>
<tr>
<td>Rural ‘Chlorine’ 7/2.5 AAAC 20% CBL – 900 Pa wind</td>
<td>3102</td>
</tr>
<tr>
<td>Rural ‘Chlorine’ 7/2.5 AAAC 20% CBL – 1200 Pa wind</td>
<td>3103</td>
</tr>
<tr>
<td>Rural ‘Helium’ 7/3.75 AAAC 20% CBL – 900 Pa wind</td>
<td>3110</td>
</tr>
<tr>
<td>Rural ‘Helium’ 7/3.75 AAAC 20% CBL – 1200 Pa wind</td>
<td>3111</td>
</tr>
<tr>
<td>Rural ‘Iodine’ 7/4.75 AAAC 20% CBL – 900 Pa wind</td>
<td>3000</td>
</tr>
<tr>
<td>Rural ‘Iodine’ 7/4.75 AAAC 20% CBL – 1200 Pa wind</td>
<td>3001</td>
</tr>
<tr>
<td>Rural ‘Raisin’ 3/4/2.5 ACSR/GZ 22% CBL – 900 and 1200 Pa wind</td>
<td>3032</td>
</tr>
<tr>
<td>Rural ‘Apple’ 6/1/3.00 ACSR/GZ 22% CBL – 900 Pa wind</td>
<td>3021</td>
</tr>
<tr>
<td>Rural ‘Apple’ 6/1/3.00 ACSR/GZ 22% CBL – 1200 Pa wind</td>
<td>3022</td>
</tr>
<tr>
<td>‘Sultana’ 4/3/3.00 ACSR/GZ 22% CBL – 900 and 1200 Pa wind</td>
<td>3036</td>
</tr>
<tr>
<td>Rural ‘Banana’ 6/1/3.75 ACSR/GZ 22% CBL – 900 Pa wind</td>
<td>3019</td>
</tr>
<tr>
<td>Rural ‘Banana’ 6/1/3.75 ACSR/GZ 22% CBL – 1200 Pa wind</td>
<td>3020</td>
</tr>
<tr>
<td>Rural 3/2.75 SC/AC 25% CBL – 900 and 1200 Pa wind</td>
<td>3014</td>
</tr>
<tr>
<td>Rural 3/2.75 SC/CG 25% CBL – 900 and 1200 Pa wind</td>
<td>3007</td>
</tr>
<tr>
<td>36-48 Fibre ADSS Cable – Long Span 6% CBL – 900 and 1200 Pa wind</td>
<td>3454</td>
</tr>
<tr>
<td>36-48 Fibre ADSS Cable – Short Span 10% CBL – 900 Pa wind</td>
<td>3455</td>
</tr>
<tr>
<td>36-48 Fibre ADSS Cable – Short Span 10% CBL – 1200 Pa wind</td>
<td>3456</td>
</tr>
<tr>
<td>96 Fibre ADSS Cable – Short Span 5% CBL – 900 and 1200 wind</td>
<td>3506</td>
</tr>
<tr>
<td>96 Fibre ADSS Cable – Long Span 6% CBL – 900 and 1200 wind</td>
<td>3507</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>DWG</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>NBN Type 2, 72 Fibre 2% CBL – 900Pa and 1200Pa wind</td>
<td>3469</td>
</tr>
<tr>
<td>NBN Type 2, 144 Fibre 2% CBL – 900Pa and 1200Pa wind</td>
<td>3470</td>
</tr>
<tr>
<td>Rural ‘Leo’ 7/2.5 AAC 2.5% CBL – 900 & 1200 Pa wind</td>
<td>3502</td>
</tr>
<tr>
<td>Rural ‘Leo’ 7/2.5 AAC 6% CBL – 900 & 1200 Pa wind</td>
<td>3503</td>
</tr>
<tr>
<td>Rural ‘Leo’ 7/2.5 AAC 10% CBL – 900 & 1200 Pa wind</td>
<td>3504</td>
</tr>
<tr>
<td>Rural ‘Chlorine’ 7/2.5 AAC 6.5% CBL – 900 & 1200 Pa wind</td>
<td>3505</td>
</tr>
</tbody>
</table>
Limit State Design Wind Pressure

- **Wind Pressure**: 1200 Pa
- **Wind Pressure**: 900 Pa

Conductor: 4xF6mm² LVABC

Overall Diameter: 38.4mm

Sectional Area: 380mm²

Mass: 1350 kg/km

Calculated Breaking Load: 53.2kN

15°C No Wind: 6% C.B.L

25°C 1200 Pa Wind: 40% C.B.L

Notes:

1. No allowance required for inelastic stretch.
Standard for Distribution Line Design Overhead

DISTRIBUTION DESIGN - OVERHEAD
STRINGING CHARTS
SEMI-URBAN 4x95mm² LVABC
10% C.B.L. - 900 AND 1200 Pa WIND

APPROVED: C. Noei
DATE: 30.06.01
PASSED: C. Avenell
DRAWN: L. Burton

FILE: 5 33 3033 1
Dwg: 3033 Sh

Cable: 4x95mm² LVABC
Overall Diameter: 38.4mm
Sectional Area: 380mm²
Mass: 1350 kg/km
Calculated Breaking Load: 53.2kN
15°C NO WIND: 10% C.B.L.
25°C 1200 Pa WIND: 40% C.B.L.

Notes:
1. No allowance required for inelastic stretch

TENSION (kN)

SPAN (m)

Overhead Construction Manual chart Reference Dwg 1245
LIMIT STATE DESIGN WIND PRESSURE 1200Pa

LIMIT STATE DESIGN WIND PRESSURE 900Pa

CABLE:
OVERALL DIAMETER : 2x95mm² LVABC
SECTIONAL AREA : 31.8mm²
MASS : 190mm²
CALCULATED BREAKING LOAD:
15°C NO WIND : 880 kg/km
25°C 1200 Pa WIND : 26.6kN
6% C.B.L.
40% C.B.L.

NOTES:-
1. No allowance required for inelastic stretch.

SAG CURVES

SAG METRES

TEMPERATURE CURVES

SPAN (m) Overhead Construction Manual chart Reference Dwg 1249

FILE: 5 33 3017 1 Dwg 3017 Sh
CONDUCTOR: 2x95mm² LVABC
OVERALL DIAMETER: 31.8mm
SECTIONAL AREA: 190mm²
MASS: 680kg/km
CALCULATED BREAKING LOAD: 26.6kN
15°C NO WIND: 10% C.B.L.
25°C 900 Pa WIND: 40% C.B.L.

NOTES:-
1. No allowance required for inelastic stretch.
CONDUCTOR: 2x95mm² LVABC
OVERALL DIAMETER: 31.8mm
SECTIOINAL AREA: 190mm²
MASS: 680kg/km
CALCULATED BREAKING LOAD: 26.6kN
15°C NO WIND: 10% C.B.L.
25°C 1200 Pa WIND: 40% C.B.L.

NOTES:-
1. No allowance required for inelastic stretch.
NOTES:-
1. No allowance required for inelastic stretch.
CABLE: 4x50mm² LVABC
OVERALL DIAMETER: 28.7mm
SECTIONAL AREA: 200mm²
MASS: 700kg/km
CALCULATED BREAKING LOAD: 28kN
15°C NO WIND: 6% C.B.L.
25°C 1200 Pa WIND: 40% C.B.L.

NOTES:
1. No allowance required for inelastic stretch.

Overhead Construction Manual chart Reference Dwg 1254
CABLE: 2x50mm² LVABC
OVERALL DIAMETER: 23.8mm
SECTIONAL AREA: 100mm²
MASS: 350kg/km
CALCULATED BREAKING LOAD: 14kN
15°C NO WIND: 2.5% C.B.L.
25°C 1200 Pa WIND: 40% C.B.L.

NOTES:-
1. No allowance required for inelastic stretch.

DISTRIBUTION DESIGN - OVERHEAD STRINGING CHARTS
2x50mm² LVABC - SLACK STRINGING
2.5% C.B.L. - 900 AND 1200 Pa WIND

FILE: 033 30181
Dwg 3018 Sh

Ergon Energy Corporation Limited ABN 50 087 846 062
Limit State Design Wind Pressure 900Pa

Conductor: 2x50mm² LVABC

Overall Diameter: 23.8mm

Sectional Area: 100mm²

Mass: 350kg/km

Calculated Breaking Load: 14kN

- **15°C No Wind:** 6% C.B.L.
- **25°C 900 Pa Wind:** 40% C.B.L.

Notes:
1. No allowance required for inelastic stretch.

Temperature Curves

Span (m): 10 20 30 40 50 60 70 80 90 100

Tension (KN): 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sag Curves

- **0°C**
- **10°C**
- **20°C**
- **30°C**
- **40°C**
- **50°C**

Sag in Metres

- **0.1m**
- **0.5m**
- **1.0m**
- **1.5m**
- **2.0m**
- **2.5m**
- **3.0m**
- **3.5m**
- **4.0m**
- **4.5m**

Overhead Construction Manual Chart Reference Dwg 1105

Distribution Design - Overhead Stringing Charts

Urban 2x50mm² LVABC

6% C.B.L. - 900 Pa Wind

Ergon Energy Corporation Limited ABN 50 087 646 062

Page 139 of 206

Standard STNW3361 Ver 2
Standard for Distribution Line Design Overhead

CABLE: 2x50mm² LVABC

OVERALL DIAMETER: 23.8mm

SECTIONAL AREA: 100mm²

MASS: 350kg/km

CALCULATED BREAKING LOAD: 14kN

15°C NO WIND: 6% C.B.L.

25°C 1200 Pa WIND: 40% C.B.L.

NOTES:

1. No allowance required for inelastic stretch.

TEMPERATURE CURVES

SAG IN METRES

SAG CURVES

<table>
<thead>
<tr>
<th>SPAN (m)</th>
<th>TENSION (kN)</th>
<th>Span</th>
<th>Sag in Metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.4</td>
<td>0.1m</td>
<td>3.0m</td>
</tr>
<tr>
<td>20</td>
<td>2.8</td>
<td>0.6m</td>
<td>3.5m</td>
</tr>
<tr>
<td>30</td>
<td>3.2</td>
<td>1.0m</td>
<td>4.0m</td>
</tr>
<tr>
<td>40</td>
<td>3.6</td>
<td>1.4m</td>
<td>4.5m</td>
</tr>
<tr>
<td>50</td>
<td>4.0</td>
<td>1.8m</td>
<td>5.0m</td>
</tr>
<tr>
<td>60</td>
<td>4.4</td>
<td>2.0m</td>
<td>5.5m</td>
</tr>
<tr>
<td>70</td>
<td>4.8</td>
<td>2.5m</td>
<td>6.0m</td>
</tr>
<tr>
<td>80</td>
<td>5.2</td>
<td>3.0m</td>
<td>6.5m</td>
</tr>
<tr>
<td>90</td>
<td>5.6</td>
<td>3.5m</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6.0</td>
<td>4.0m</td>
<td></td>
</tr>
</tbody>
</table>

OVERHEAD CONSTRUCTION MANUAL CHART REFERENCE DWG 1252

DISTRIBUTION DESIGN - OVERHEAD STRINGING CHARTS

URBAN 2x50mm² LVABC

6% C.B.L. - 1200 Pa WIND

FILE: 3330231

Dwg: 3023

Sh: C

Ergon Energy Corporation Limited ABN 50 087 646 062

Page 140 of 206
Standard for Distribution Line Design Overhead

LIMIT STATE DESIGN WIND PRESSURE 1200Pa

CONDUCTOR: 2x50mm² LVABC
OVERALL DIAMETER: 23.8mm
SECTIONAL AREA: 100mm²
MASS: 350kg/km
CALculated BREAKING LOAD: 14kN

15°C NO WIND: 10% C.B.L.
25°C 1200 Pa WIND: 40% C.B.L.

NOTES:- 1. No allowance required for inelastic stretch.

<table>
<thead>
<tr>
<th>SPAN (m)</th>
<th>Overhead Construction Manual chart Reference Dwg 1264</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

A ORIGINAL ISSUE
B 01.03.32
C 28.11.11

APPROVED C. Noel
DATE 09-05-01
PASSED C. Asenell
DRAWN L. Burton
FILE: 53330251 Dwg 3025 Sh

Standard STNW3361 Ver 2

Ergon Energy Corporation Limited ABN 50 087 646 062
NOTES:
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch

CONDUCTOR: LIBRA
STRANDING: 7/3.00
OVERALL DIAMETER: 9mm
SECTIONAL AREA: 49.5mm²
MASS: 135kg/km
CALCULATED BREAKING LOAD: 7.9kN
15°C NO WIND: 2.4% C.B.L

SAGS FOR SPANS LESS THAN 20.0m
SHALL BE CALCULATED AS: SPAN (m) / 25

<table>
<thead>
<tr>
<th>SPAN (m)</th>
<th>TENSION (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.125</td>
</tr>
<tr>
<td>30</td>
<td>0.15</td>
</tr>
<tr>
<td>40</td>
<td>0.175</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
</tr>
<tr>
<td>60</td>
<td>0.225</td>
</tr>
<tr>
<td>70</td>
<td>0.225</td>
</tr>
<tr>
<td>80</td>
<td>0.225</td>
</tr>
</tbody>
</table>

TEMPERATURE CURVES

0°C 10°C 15°C 20°C 25°C 30°C 35°C 40°C 45°C 50°C 55°C 60°C

SAG IN METRES
0m 0.6m 0.9m 1.0m 1.2m 1.4m 1.6m 1.8m 2.0m 2.5m 3.0m

SAG CURVES

Ergon Energy Corporation Limited ABN 50 087 646 062
NOTES:-
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch

CONDUCTOR: MARS
STRANDING: 7/3.75
OVERALL DIAMETER: 11.3mm
SECTIONAL AREA: 77.3mm²
MASS: 212kg/km
CALCULATED BREAKING LOAD: 11.9kN
15°C NO WIND: 2.5% C.B.L.
NOTES:
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch

CONDUCTOR: MOON
STRANDING: 7/4.75
OVERALL DIAMETER: 14.3mm
SECTIONAL AREA: 124mm²
MASS: 340kg/km
CALCULATED BREAKING LOAD: 18.8kN
15°C NO WIND: 2.5% C.B.L.

TEMPERATURE CURVES
SAGS FOR SPANS LESS THAN 20.0m
SHALL BE CALCULATED AS:

SPAN (m) TENSION (kN)
20 0.9m
30 0.5m
40 1.0m
50 1.5m
60 2.0m

SAG IN METRES
0°C
15°C
30°C
45°C
60°C
75°C

LIMITE STATE DESIGN WIND PRESSURE 1200Pa
LIMITE STATE DESIGN WIND PRESSURE 900Pa

Overhead Construction Manual chart Reference Dwg 1211

A ORIGINAL ISSUE
B 01.03.02
C 23.11.11

DISTRIBUTION DESIGN - OVERHEAD STRINGING CHARTS
SLACK STRINGING 'MOON' 7/4.75 A.A.C.
2.5% C.B.L. 900Pa AND 1200Pa WIND

FILE: 53331811 Dwg 3161 Sh
LIMIT STATE DESIGN WIND PRESSURE 1200Pa
LIMIT STATE DESIGN WIND PRESSURE 900Pa

TENSION (kN)

SAG IN METRES

TEMPERATURE CURVES

SAGS FOR SPANS LESS THAN 20.0m SHALL BE CALCULATED AS :- SPAN (m)

SPAN (m) Overhead Construction Manual chart Reference Dwg 1211

NOTES:-
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch

CONDUCTOR:
PLUTO

STRANDING:
19/3.75

OVERALL DIAMETER :
18.8mm

SECTIONAL AREA :
210mm²

MASS :
578kg/km

CALCULATED BREAKING LOAD : 32.3kN

15°C NO WIND :
2.5% C.B.L.
LIMIT STATE DESIGN WIND PRESSURE 1200Pa
LIMIT STATE DESIGN WIND PRESSURE 900Pa

CONDUCTOR: LIBRA
STRANDING: 7/3.00
OVERALL DIAMETER: 9mm
SECTIONAL AREA: 49.5mm²
MASS: 135kg/km
CALCULATED BREAKING LOAD: 7.9kN
15°C NO WIND: 5.6% C.B.L

NOTES:
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch.
CONDUCTOR: MARS
STRAINING: 7/3.75
OVERALL DIAMETER: 11.3mm
SECTIONAL AREA: 77.3mm²
MASS: 212kg/km
CALCULATED BREAKING LOAD: 11.9kN
15°C NO WIND: 5.9% C.B.L.

NOTES:
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch.
NOTES:
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch.
NOTES:
1. Armour rods are not necessary.
2. No allowances required for inelastic stretch.

LIMIT STATE DESIGN WIND PRESSURE 1200Pa
LIMIT STATE DESIGN WIND PRESSURE 900Pa

CONDUCTOR: PLUTO
STRANDING: 19/3.75
OVERALL DIAMETER: 18.8mm
SECTIONAL AREA: 210mm²
MASS: 578kg/km
CALCULATED BREAKING LOAD: 32.3kN

15°C NO WIND: 5.9% C.B.L.

TENSION (kN)

SPAN (m) Overhead Construction Manual chart Reference Dwg 1210

A ORIGINAL ISSUE
B 01.03.02
C 30.11.11

DISTRIBUTION DESIGN - OVERHEAD STRINGING CHARTS
URBAN 'PLUTO' 19/3.75 A.A.C.
+6% C.B.L. 900Pa AND 1200Pa WIND

Ergon Energy Corporation Limited ABN 50 087 846 082
FILE: 5 33 3165 1
Dwg 3165 Sh
CONDUCTOR: LIBRA
STRANDING: 7/3.00
OVERALL DIAMETER: 9mm
SECTIONAL AREA: 49.5mm²
MASS: 135kg/km
CALCULATED BREAKING LOAD: 7.8kN
15°C NO WIND: 9.4% C.B.L.

NOTES:-
1. Armour rods are not necessary.
2. String new conductor at ambient temperature minus 5°C to cater for inelastic stretch.
CONDUCTOR: MARS
STRANDING: 7/3.75
OVERALL DIAMETER : 11.3mm
SECTIONAL AREA : 77.3mm²
MASS : 212kg/km
CALCULATED BREAKING LOAD : 11.9kN
15°C NO WIND : 9.8% C.B.L.

NOTES:-
1. Armour rods are not necessary.
2. String new conductor at ambient temperature minus 5°C to cater for inelastic stretch.
LIMIT STATE DESIGN WIND PRESSURE 1200Pa
LIMIT STATE DESIGN WIND PRESSURE 900Pa

CONDUCTOR: MOON
STRANDING: 7/4.75
OVERALL DIAMETER: 14.3mm
SECTIONAL AREA: 124mm²
MASS: 340kg/km
CALCULATED BREAKING LOAD: 18.8kN
15°C NO WIND: 10.0% C.B.L.

NOTES:
1. Armour rods are not necessary.
2. String new conductor at ambient temperature minus 5°C to cater for inelastic stretch.

DISTRIBUTION DESIGN - OVERHEAD
STRINGING CHARTS
SEMI-URBAN 'MOON' 7/4.75 A.A.C.
≤ 10% C.B.L. 900Pa AND 1200Pa WIND

Ergon Energy Corporation Limited ABN 50 087 646 062
NOTES:
1. Armour rods are not necessary.
2. String new conductor at ambient temperature minus 5°C to cater for inelastic stretch.
CONDUCTOR: LIBRA
STRANDING: 7/3.00
OVERALL DIAMETER: 9mm
SECTIONAL AREA: 49.5mm²
MASS: 135 kg/km
CALCULATED BREAKING LOAD: 7.9kN
15°C NO WIND: 20% C.B.L.
25°C 900 Pa WIND: 72% C.B.L.

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temp. minus 10°C to cater for inelastic stretch.
CONDUCTOR: LIBRA
STRANDING: 7/3,00
OVERALL DIAMETER: 9mm
SECTONAL AREA: 49.5mm²
MASS: 135 kg/km
CALCULATED BREAKING LOAD: 7.9kN

15°C NO WIND: 20% C.B.L.
25°C 1200 Pa WIND: 72% C.B.L.

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
CONDUCTOR: MARS
STRANDING: 7/3.75
OVERALL DIAMETER: 11.3mm
SECTIONAL AREA: 77.3mm²
MASS: 212 kg/km
CALCULATED BREAKING LOAD: 11.9kN
15°C NO WIND: 20% C.B.L
25°C 900 Pa WIND: 72% C.B.L

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
Notes:

1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
Standard for Distribution Line Design Overhead

NOTES:

1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
CONDUCTOR: PLUTO
STRANDING: 19/3.75
OVERALL DIAMETER: 18.8mm
SECTIONAL AREA: 210mm²
MASS: 578kg/km
CALCULATED BREAKING LOAD: 32.3kN
15°C NO WIND: 20% C.B.L.
25°C 1200 Pa WIND: 72% C.B.L.

TENSION (KN)

17.0
16.0
15.0
14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

0°C
10°C
20°C
30°C
40°C
50°C
60°C
75°C

SAG IN METRES

0.6m
0.8m
1.0m
1.2m
1.4m
1.6m
1.8m
2.0m
2.5m
3.0m
3.5m
4.0m
4.5m
5.0m
5.5m
6.0m
6.5m
7.0m
7.5m
8.0m

SPAN (m)

50
100
150
200
250
300

LIMIT STATE DESIGN WIND PRESSURE 1200Pa
LIMIT STATE DESIGN WIND PRESSURE 800Pa

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.

Overhead Construction Manual chart Reference Dwg 1222
NOTES:-
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 15°C to cater for inelastic stretch.
CONDUCTOR: FLUORINE
STRANDING: 7/3.0
OVERALL DIAMETER: 9.0mm
SECTIONAL AREA: 49.5mm²
MASS: 135kg/km
CALCULATED BREAKING LOAD: 11.8kN
15°C NO WIND: 20% C.B.L.
25°C 1200 Pa WIND: 72% C.B.L.

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 15°C to cater for inelastic stretch.
CONDUCTOR: CHLORINE
STRANDING: 7/2.5
OVERALL DIAMETER: 7.5mm
SECTIONAL AREA: 34.4mm²
MASS: 94.3 kg/km
CALCULATED BREAKING LOAD: 8.2kN
15°C NO WIND: 20% C.B.L.
25°C 900 Pa WIND: 72% C.B.L.

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 15°C to cater for inelastic stretch.
NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 15°C to cater for inelastic stretch.
Limit State Design Wind Pressure 900 Pa

Conductor: Iodine

Stranding: 7/4.75

Overall Diameter: 14.3 mm

Sectional Area: 124.0 mm²

Mass: 340 kg/km

Calculated Breaking Load: 27.1 kN

15°C No Wind: 20% C.B.L

26°C 900 Pa Wind: 72% C.B.L

Notes:

1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 15°C to cater for inelastic stretch.

Stringing Charts

- **Distribuition Design - Overhead**
 - **Rural Iodine 7/4.75 AAAC**
 - **20% C.B.L - 900 Pa Wind**

References:

- Overhead Construction Manual chart Reference Dwg 1228

Approval Details:

- **Approved by:** C. Neal
- **Date:** 26.02.01
- **Passed by:** C. Avenell
- **Drawn by:** L. Burton

File: 5 33 30001

Dwg: 3000

Sh: C

Ergon Energy Corporation Limited ABN 50 087 646 062
CONDUCTOR: IODINE
STRANDING: 7/4.75
OVERALL DIAMETER: 14.3mm
SECTIONAL AREA: 124.0mm²
MASS: 340kg/km
CALCULATED BREAKING LOAD: 27.1kN
15°C NO WIND: 20% C.B.L.
25°C 1200 Pa WIND: 72% C.B.L.

NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 15°C to cater for inelastic stretch.
NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
NOTES:

1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.

CONDUCTOR: APPLE

STRANDING: 6/1/3.00

OVERALL DIAMETER: 9.0 mm

SECTIONAL AREA: 49.5 mm²

MASS: 171 kg/km

NOMINAL BREAKING LOAD: 14.9 kN

15°C NO WIND: 22% C.B.L.

15°C 900 Pa WIND: 70% C.B.L.
Standard for Distribution Line Design Overhead

NOTES:-

1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.

Graphical Representation:

- **Temperature Curves:**
 - Various temperature points (e.g., 10°C, 20°C, 30°C, 40°C, 50°C) are shown with corresponding sag curves.
 - The temperature affects the tension and sag of the overhead lines.

- **Sag Curves:**
 - Curves indicating the sag in metres for different spans and tensions.
 - The curves are plotted at various span lengths (e.g., 50m to 350m).

Technical Specifications:

- **Conductor:** Apple
- **Stranding:** 6/1/3.00
- **Overall Diameter:** 9.0mm
- **Sectional Area:** 49.5mm²
- **Mass:** 171kg/km
- **Nominal Breaking Load:** 14.9kN
- **15°C No Wind:** 22% C.B.L.
- **15°C 1200 Pa Wind:** 70% C.B.L.
NOTES:-
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
CONDUCTOR: BANANA
STRANDING: 6/1/3.75
OVERALL DIAMETER: 11.3mm
SECTIONAL AREA: 77.3mm²
MASS: 268kg/km
NOMINAL BREAKING LOAD: 22.8kN
15°C NO WIND: 22% C.B.L.
15°C 900 Pa WIND: 70% C.B.L.

NOTES:-
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
NOTES:
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. String new conductor at ambient temperature minus 10°C to cater for inelastic stretch.
NOTES:-
1. Armour rods are necessary.
2. Vibration damping must be considered when using this conductor.
3. No allowance required for inelastic stretch.
Conductor Type:
36-48 Fibre ADSS Cable - Long Span

Sectional Area:
216.7 mm²

Overall Diameter:
18.4 mm

Distributed Mass:
255 kg/km

Final Modulus of Elasticity:
15.9 GPa

Coefficient of Expansion /°C:
7 x 10⁻⁶

Calculated Breaking Load:
59 kN

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Tension (kN)</th>
<th>Span (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>0.2m</td>
<td>1m</td>
</tr>
<tr>
<td>10°C</td>
<td>0.4m</td>
<td>1.2m</td>
</tr>
<tr>
<td>15°C</td>
<td>0.6m</td>
<td>1.4m</td>
</tr>
<tr>
<td>20°C</td>
<td>0.8m</td>
<td>1.6m</td>
</tr>
<tr>
<td>30°C</td>
<td>1m</td>
<td>1.8m</td>
</tr>
<tr>
<td>40°C</td>
<td>1.2m</td>
<td>2m</td>
</tr>
<tr>
<td>50°C</td>
<td>1.4m</td>
<td>2.2m</td>
</tr>
<tr>
<td>60°C</td>
<td>1.6m</td>
<td>2.4m</td>
</tr>
<tr>
<td>80°C</td>
<td>1.8m</td>
<td>2.6m</td>
</tr>
</tbody>
</table>

SAG Curves

Temperature Curves

Distribution Design - Overhead Stringing Charts
36-48 Fibre ADSS Cable - Long Span
6% C.B.L - 900 and 1200 Pa Wind

Ammended: 30.5.09
Passed: [Signature]
Drawn: L. Burton

Ergon Energy Corporation Limited ABN 50 087 646 062
CONDUCTOR TYPE: 36-48 FIBRE ADSS CABLE - SHORT SPAN
SECTIONAL AREA: 124.3 mm²
OVERALL DIAMETER: 14.5 mm
DISTRIBUTED MASS: 160 kg/km
FINAL MODULUS OF ELASTICITY: 11.1 GPa
COEFFICIENT OF EXPANSION /°C: 12.4 × 10^-6
CALCULATED BREAKING LOAD: 18 kN
15°C NO WIND: 10% C.B.L
25°C 1200Pa WIND: 34.4% C.B.L
Refer dwg no. 1777 in the Stringing Charts folder of the O/H Constuction Manual for sag & temperature curves.
NOTES:-
1. No allowance required for inelastic stretch.
Limit State Design Wind Pressure 1200Pa

Limit State Design Wind Pressure 900Pa

Conductor: AAC 7/2.5 Leo
Equivalent Overall Diameter: 7.5mm
Sectional Area: 34.4mm²
Mass: 94kg/km
Calculated Breaking Load: 5.75kN
15°C No Wind: 6% C.B.L.
25°C 900 Pa Wind: 72% C.B.L.
25°C 1200 Pa Wind: 72% C.B.L.

Notes:
1. No allowance required for inelastic stretch.

DISTRIBUTION DESIGN - OVERHEAD STRINGING CHARTS
"LEO" AAC 7/2.5 CONDUCTOR 6% C.B.L. - 900 Pa & 1200 Pa WIND - FOR 7/0.064" COPPER REPLACEMENT

Dwg 3503 Sh

Ergon Energy Corporation Limited ABN 50 087 646 062
CONDUCTOR: AAAC 7/2.5 Chlorine
EQUIVALENT OVERALL DIAMETER: 7.5mm
SECTIONAL AREA: 34.4mm²
MASS: 94.3kg/km
CALCULATED BREAKING LOAD: 8.2kN
15°C C NO WIND: 6.5% C.B.L.
25°C 900 Pa WIND: 72% C.B.L.
25°C 1200 Pa WIND: 72% C.B.L.

NOTES:
1. No allowance required for inelastic stretch.

TEMPERATURE CURVES
0°C
10°C
15°C
20°C
40°C
30°C
60°C
80°C

SAG IN METERS
0.2m
0.4m
0.6m
0.8m
1.2m
1.4m
1.6m
1.8m

SAG CURVES
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

TENSION (kN)
0.0
1.0
1.4
1.6
1.8
2.0

SPAN (m)
0
10
20
30
40
50
60
70
80
90
100

LIMIT STATE DESIGN WIND PRESSURE 1200 Pa
LIMIT STATE DESIGN WIND PRESSURE 800 Pa

7/0.084” strung at 10% is equivalent to ‘Chlorine’ strung at 6.5%
17. APPENDIX C – POLE CHARACTERISTICS AND NET ALLOWABLE POLE TIP LOADS

Table 17-1 – V.P.I. Wood Poles Net Allowable Pole Tips (Non-Cyclonic Regions)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>Limit State Pole Tip Loads (kN)</th>
<th>Stabilised Backfill</th>
<th>Std Depth</th>
<th>Std Depth</th>
<th>Std Depth</th>
<th>Std Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std Depth +300</td>
<td>Std Depth +450</td>
<td>Std Depth +600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Pole Strength Rating (kN)</td>
<td>Standard Setting Depth (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN)</td>
<td>Note 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN)</td>
<td>Note 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN)</td>
<td>Note 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMINAL POLE STRENGTH RATING (kN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.4</td>
<td>2.165</td>
<td>2.969</td>
<td>3.624</td>
<td>4.688</td>
<td>4.874</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>5.599</td>
<td>5.321</td>
<td>4.019</td>
<td>5.411</td>
<td>7.050</td>
</tr>
<tr>
<td>8</td>
<td>14.4</td>
<td>2.954</td>
<td>4.072</td>
<td>4.413</td>
<td>5.963</td>
<td>7.787</td>
</tr>
<tr>
<td>9.5</td>
<td>5.4</td>
<td>2.438</td>
<td>3.289</td>
<td>4.014</td>
<td>7.401</td>
<td>4.217</td>
</tr>
<tr>
<td>11</td>
<td>5.4</td>
<td>2.844</td>
<td>3.847</td>
<td>4.420</td>
<td>5.847</td>
<td>7.506</td>
</tr>
<tr>
<td>12</td>
<td>5.4</td>
<td>3.303</td>
<td>4.481</td>
<td>4.879</td>
<td>6.481</td>
<td>8.344</td>
</tr>
<tr>
<td>12.5</td>
<td>5.4</td>
<td>3.708</td>
<td>5.040</td>
<td>5.285</td>
<td>7.040</td>
<td>9.082</td>
</tr>
<tr>
<td>14</td>
<td>5.4</td>
<td>3.127</td>
<td>4.061</td>
<td>4.380</td>
<td>4.396</td>
<td>8.995</td>
</tr>
<tr>
<td>14</td>
<td>5.4</td>
<td>3.808</td>
<td>4.716</td>
<td>5.477</td>
<td>7.011</td>
<td>9.812</td>
</tr>
<tr>
<td>15.5</td>
<td>5.4</td>
<td>4.208</td>
<td>5.514</td>
<td>6.077</td>
<td>7.810</td>
<td>9.783</td>
</tr>
<tr>
<td>17</td>
<td>5.4</td>
<td>4.746</td>
<td>6.230</td>
<td>6.617</td>
<td>8.526</td>
<td>10.700</td>
</tr>
<tr>
<td>20</td>
<td>5.4</td>
<td>5.363</td>
<td>6.972</td>
<td>7.402</td>
<td>9.398</td>
<td>11.653</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMINAL POLE STRENGTH RATING (kN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.55</td>
<td>4.884</td>
<td>6.560</td>
<td>7.305</td>
<td>8.127</td>
<td>9.147</td>
</tr>
<tr>
<td>5</td>
<td>1.70</td>
<td>4.913</td>
<td>5.428</td>
<td>7.087</td>
<td>8.995</td>
<td>10.899</td>
</tr>
<tr>
<td>8</td>
<td>1.70</td>
<td>4.194</td>
<td>5.605</td>
<td>5.908</td>
<td>7.742</td>
<td>9.851</td>
</tr>
<tr>
<td>11</td>
<td>1.70</td>
<td>4.324</td>
<td>4.360</td>
<td>4.376</td>
<td>4.396</td>
<td>8.995</td>
</tr>
<tr>
<td>12</td>
<td>1.70</td>
<td>4.634</td>
<td>5.477</td>
<td>7.011</td>
<td>9.812</td>
<td>10.561</td>
</tr>
<tr>
<td>14</td>
<td>1.70</td>
<td>5.068</td>
<td>6.481</td>
<td>8.524</td>
<td>10.552</td>
<td>12.123</td>
</tr>
<tr>
<td>15.5</td>
<td>2.00</td>
<td>5.445</td>
<td>5.477</td>
<td>7.011</td>
<td>9.812</td>
<td>11.140</td>
</tr>
<tr>
<td>20</td>
<td>2.00</td>
<td>6.456</td>
<td>7.628</td>
<td>8.852</td>
<td>10.552</td>
<td>12.123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMINAL POLE STRENGTH RATING (kN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.85</td>
<td>5.363</td>
<td>6.972</td>
<td>7.402</td>
<td>9.398</td>
<td>11.653</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>6.489</td>
<td>8.052</td>
<td>9.524</td>
<td>11.552</td>
<td>13.123</td>
</tr>
<tr>
<td>8</td>
<td>2.00</td>
<td>7.909</td>
<td>9.982</td>
<td>10.327</td>
<td>12.850</td>
<td>15.663</td>
</tr>
<tr>
<td>11</td>
<td>2.00</td>
<td>8.308</td>
<td>10.078</td>
<td>11.542</td>
<td>14.063</td>
<td>16.674</td>
</tr>
<tr>
<td>12</td>
<td>2.00</td>
<td>8.959</td>
<td>10.628</td>
<td>12.138</td>
<td>15.663</td>
<td>18.611</td>
</tr>
<tr>
<td>14</td>
<td>2.00</td>
<td>9.526</td>
<td>11.187</td>
<td>12.638</td>
<td>15.663</td>
<td>20.551</td>
</tr>
<tr>
<td>15.5</td>
<td>2.30</td>
<td>10.097</td>
<td>11.738</td>
<td>13.187</td>
<td>16.663</td>
<td>22.491</td>
</tr>
<tr>
<td>20</td>
<td>2.30</td>
<td>10.677</td>
<td>12.288</td>
<td>13.697</td>
<td>17.197</td>
<td>24.431</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. The Nominal Pole Strength Rating is the allowable pole tip load due to the more severe of:
 a. maximum wind at 15°C,
 b. minimum temperature at no wind.
2. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
3. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL:
1. Soil Description: Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL:
1. Soil Description: Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL:
1. Soil Description: Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-2 – V.P.I. Wood Poles Net Allowable Pole Tip Loads (Cyclical Regions)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 2)</th>
<th>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 2)</th>
<th>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>Stabilised Backfill</td>
</tr>
<tr>
<td>Length (m)</td>
<td>STD Depth (kN)</td>
<td>STD Depth (kN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>5.4</td>
<td>2.188</td>
<td>3.078</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. The Nominal Pole Strength Rating is the allowable pole tip load due to the more severe of:
 (a) maximum wind at 15°C,
 (b) minimum temperature at no wind.
2. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
3. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL

1. Soil Description:
 Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL

1. Soil Description:
 Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.
<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE SUSTAINED POLE TIP LOADS (kN)</th>
<th>MEDIUM SOIL - NET ALLOWABLE SUSTAINED POLE TIP LOADS (kN)</th>
<th>GOOD SOIL - NET ALLOWABLE SUSTAINED POLE TIP LOADS (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Setting Depth (m)</td>
<td>Stabilised Backfill</td>
<td>Standard Setting Depth (m)</td>
</tr>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>STD Depth +300</td>
</tr>
<tr>
<td></td>
<td>STD Depth +150</td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
</tr>
<tr>
<td></td>
<td>STD Depth +600</td>
<td>STD Depth +150</td>
<td>STD Depth +300</td>
</tr>
<tr>
<td>Length (m)</td>
<td>Nominal Pole Strength Rating (kN) (Note 1)</td>
<td>Standard Setting Depth (m)</td>
<td>Sustained Load Rating (kN)</td>
</tr>
<tr>
<td>8</td>
<td>1.5 0.756 0.975 1.161 1.500 1.500</td>
<td>1.145 1.500 1.500 1.500 1.500 1.500</td>
<td>1.500 1.500 1.500 1.500 1.500 1.500</td>
</tr>
<tr>
<td>11</td>
<td>1.70 0.995 1.236 1.471 1.500 1.500</td>
<td>1.500 1.500 1.500 1.500 1.500 1.500</td>
<td>1.500 1.500 1.500 1.500 1.500 1.500</td>
</tr>
<tr>
<td>12.5</td>
<td>1.85 1.190 1.480 1.687 2.073 2.500</td>
<td>1.233 2.381 2.500 2.500 2.500 2.500</td>
<td>2.500 2.500 2.500 2.500 2.500 2.500</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. The Nominal Pole Strength Rating is the allowable pole tip load due to the more severe of (a) maximum wind at 15°C, (b) minimum temperature at no wind.
2. The Net Allowable Sustained Pole Tip Load is the pole element strength under sustained loading conditions.
3. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL

1. Soil Description:
 - Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL

1. Soil Description:
 - Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL

1. Soil Description:
 - Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-4 – Steel Poles Net Allowable Pole Tip Loads (Non-Cyclonic Regions)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>Length (m)</th>
<th>Limit State Pole Strength Rating (kN) (Note 1)</th>
<th>Stabilised Backfill</th>
<th>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>STD Depth +600</td>
<td>STD Depth +150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>10.8</td>
<td>5.136</td>
<td>6.753</td>
<td>8.559</td>
<td>13.363</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.4</td>
<td>5.734</td>
<td>7.569</td>
<td>9.664</td>
<td>14.058</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.15</td>
<td>5.530</td>
<td>7.170</td>
<td>9.026</td>
<td>10.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>6.169</td>
<td>8.030</td>
<td>10.137</td>
<td>11.564</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.85</td>
<td>5.180</td>
<td>6.753</td>
<td>8.559</td>
<td>13.363</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>5.734</td>
<td>7.569</td>
<td>9.664</td>
<td>14.058</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.530</td>
<td>7.170</td>
<td>9.026</td>
<td>10.047</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
2. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL
1. Soil Description:
 - Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL
1. Soil Description:
 - Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL
1. Soil Description:
 - Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-5 – Steel Poles Net Allowable Pole Tip Loads (Cyclonic Regions)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stabilised Backfill</td>
<td>Stabilised Backfill</td>
<td>Stabilised Backfill</td>
</tr>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>STD Depth +600</td>
</tr>
<tr>
<td>Length (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td>5.413</td>
<td>7.284</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
2. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL
1. Soil Description:
 - Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL
1. Soil Description:
 - Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL
1. Soil Description:
 - Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-6 – Steel Poles Net Allowable Pole Tip Loads (Sustained Loads)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Setting Depth (m)</td>
<td>Stabilised Backfill</td>
<td>Stabilised Backfill</td>
</tr>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>STD Depth +600</td>
</tr>
<tr>
<td>Length (m)</td>
<td>Limit State Pole Strength Rating (kN) (Note 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>10.8</td>
<td>1.85</td>
<td>2.700</td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td></td>
<td>3.600</td>
</tr>
<tr>
<td>14</td>
<td>12.15</td>
<td>2.00</td>
<td>2.113</td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td></td>
<td>2.396</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
2. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL
1. Soil Description:
 - Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL
1. Soil Description:
 - Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL
1. Soil Description:
 - Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-7 – Concrete Poles Net Allowable Pole Tip Loads (Non-Cycloic Regions)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limit State Pole Strength Rating (kN) (Note 1)</td>
<td>Standard Setting Depth (m)</td>
<td>Stabilised Backfill</td>
</tr>
<tr>
<td></td>
<td>(m)</td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
</tr>
<tr>
<td>12.5</td>
<td>16</td>
<td>5.718</td>
<td>7.477</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
2. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL:
1. Soil Description: Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL:
1. Soil Description: Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL:
1. Soil Description: Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-8 – Concrete Poles Net Allowable Pole Tip Loads (Cyclonic Regions)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>MEDIUM SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
<th>GOOD SOIL - NET ALLOWABLE LIMIT STATE POLE TIP LOADS (kN) (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>Stabilised Backfill</td>
</tr>
<tr>
<td>Length (m)</td>
<td>Limit State Pole Strength Rating (kN) (Note 1)</td>
<td>Standard Setting Depth (m)</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
2. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL

1. Soil Description:
 - Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL

1. Soil Description:
 - Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL

1. Soil Description:
 - Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
Table 17-9 – Concrete Poles Net Allowable Pole Tip Loads (Sustained Loads)

<table>
<thead>
<tr>
<th>Pole Description</th>
<th>POOR SOIL - NET ALLOWABLE SUSTAINED POLE TIP LOADS (kN) (Note 1)</th>
<th>MEDIUM SOIL - NET ALLOWABLE SUSTAINED POLE TIP LOADS (kN) (Note 1)</th>
<th>GOOD SOIL - NET ALLOWABLE SUSTAINED POLE TIP LOADS (kN) (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STABILISED BACKFILL</td>
<td>STABILISED BACKFILL</td>
<td>STABILISED BACKFILL</td>
</tr>
<tr>
<td>Length (m)</td>
<td>Standard Setting Depth (m)</td>
<td>Standard Setting Depth (m)</td>
<td>Standard Setting Depth (m)</td>
</tr>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>STD Depth +150</td>
</tr>
<tr>
<td></td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
<td>STD Depth +300</td>
</tr>
<tr>
<td></td>
<td>STD Depth +450</td>
<td>STD Depth +600</td>
<td>STD Depth +450</td>
</tr>
<tr>
<td></td>
<td>STD Depth +150</td>
<td>STD Depth +300</td>
<td>STD Depth +450</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. The Net Allowable Limit State Pole Tip Load is the pole element strength less the wind load on the pole referred to the pole tip.
2. Shading indicates that the foundation allows for full pole strength utilisation.

DESIGN CRITERIA - POOR SOIL

1. Soil Description:
 - Soft clay, poorly compacted sand and soil that tends to absorb large amounts of water (excluding slush).
2. Passive Soil Reaction per unit depth - 150kPa/m.

DESIGN CRITERIA - MEDIUM SOIL

1. Soil Description:
 - Compact medium clay, well bonded sandy loam, bonded sand and gravel with reasonable water drainage.
2. Passive Soil Reaction per unit depth - 300kPa/m.

DESIGN CRITERIA - GOOD SOIL

1. Soil Description:
 - Well compacted rock soil, hard clay and well bonded sand and gravel with good surface water drainage.
2. Passive Soil Reaction per unit depth - 600kPa/m.
18. APPENDIX D – WATERWAYS CROSSING SIGNAGE

Figure 18-1 – Waterways Crossing Sign – Large Overhead Powerline Warning Label

![Waterways Crossing Sign - Large Overhead Powerline Warning Label](image)

WARNING

POWER LINES

MAXIMUM VESSEL HEIGHT

XX m

CLEARANCE REDUCED IN FLOOD

Font style Series D Medium UNO in accordance with AS 1744

Colours

Red R13 - Signal Red (PMS 186C, 1795U) in accordance with AS 2700
Yellow Y15 - Sunflower (PMS 136C, 115U) in accordance with AS 2700
Black 00E53 in accordance with BS 5252
White 00E55 in accordance with BS 5252

COMPLIES WITH AS 6947-2009 Figure A2 & A4
Figure 0-2 – Waterways Crossing Sign – Small Overhead Powerline Warning Label

Font style AS 1744
Series E Wide

WARNING
POWER LINES
MAXIMUM VESSEL
HEIGHT

XXm

Font style AS 1744
Modified E

CLEARANCE REDUCED IN FLOOD

Font style Series D Medium UNO in accordance with AS 1744

Colours

Red R13 - Signal Red (PMS 186C, 1795U) in accordance with AS 2700
Yellow Y15 - Sunflower (PMS 136C, 115U) in accordance with AS 2700
Black 00E53 in accordance with BS 5252
White 00E55 in accordance with BS 5252

COMPLIES WITH AS6947-2009 Figure A3 & A5
POWER LINES CROSS THIS WATERWAY

KNOW YOUR VESSEL HEIGHT

Font style Series D Medium UNO in accordance with AS 1744

Colours
Yellow Y15 - Sunflower (PMS 136C, 115U) in accordance with AS 2700
Black 00E53 in accordance with BS 5252
White 00E55 in accordance with BS 5252

COMPLIES WITH AS6947-2009 Figure A1
Figure 0-4 – Waterways Crossing Sign – Submarine Cable Warning Sign

ANECHORING PROHIBITED

WITHIN 200 METRES
SUBMARINE CABLES
PENALTIES APPLY

Font style Series D Medium UNO in accordance with AS 1744

Colours:
- Red R13 - Signal Red (PMS 186C, 1795U) in accordance with AS 2700
- Black 00E53 in accordance with BS 5252
- White 00E55 in accordance with BS 5252

COMPLIES WITH AS6947-2009 Figure A6
Figure 0-5 – Waterways Crossing Sign – Signage Placement - Sample Plan

NOTES:
1. Refer to clause 13.4 of the Overhead Distribution Design Manual for guide lines for the placement of warning signs.
Figure 0-6 – Waterways Crossing Sign – Conductor Heighting – Sample Plan

CROSSING DETAILS

DESIGN VOLTAGE
11kV

CONDUCTOR STRANDING
7/4.75 AAC

TENSION (% of U.T.S. @ 15°C 0Pa)
10.7

MAX DESIGN TEMP OF CONDUCTOR
75°C

SAFETY ENVELOPE PROVIDED
3.0m

1 - 25000 CADAstral MAP No
9544-34

FIELD BOOK No/COMPUTER FILE
TS/02/TS/005458

MGA CO-ORDINATES AT MID SPAN
E 510500, N 7039150

CIRCUITS ABOVE CONDUCTOR
TELSTRA BELOW

LEVEL DATUM - AUSTRALIAN HEIGHT DATUM - AHD

CROSSING No. NCD 49

LOCATION MAP

N.T.S.
Figure 0-7 – Waterways Crossing Sign – Sign Assembly

NOTES:

1. For fixing sign panels refer to Ergon Specification

SIGN FIXING ASSEMBLY

- **Sign Face Panel**: 1.6mm Alum Sect., Refer Ergon Specification and Sheet 06-08
- **Stiffener Rail & Connection Strap**: Refer sheet 13
- **CHS Posts**: Refer Sheet 12
- **Fixing**: see Note 1
- **10mm Grade 316 stainless steel square neck cuphead bolts, incl. nuts and washers**
Figure 0-8 – Waterways Crossing Sign – Support Post

Supported Post Cap

88.9 x 4.8 CHS
Steel Grade C350 to AS1163
Pregalvanised 300g/m²

SUPPORT POST
3 REQD. PER SIGN
Figure 0-9 – Waterways Crossing Sign – Stiffener Rail and Connection Strap

NOTES.

Material: Aluminium Structural grade 6061-T6 or 6063-T6

Finish: Architectural

Tolerances: In accordance with Australian Standard 1856-1986

STIFFENER RAIL

Material: 2.5mm Grade 316 Stainless Steel

CONNECTION STRAP