<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Code guide</td>
<td></td>
<td>1016/1</td>
</tr>
<tr>
<td>Pole top LVABC and Open wire</td>
<td></td>
<td>1016/1</td>
</tr>
<tr>
<td>Construction Code guide</td>
<td></td>
<td>1016/2</td>
</tr>
<tr>
<td>Normal Bridge LVABC and Open wire</td>
<td></td>
<td>1016/2</td>
</tr>
<tr>
<td>Construction Code guide</td>
<td></td>
<td>1016/3</td>
</tr>
<tr>
<td>Jumper Bridge LVABC and Open wire</td>
<td></td>
<td>1016/3</td>
</tr>
</tbody>
</table>

LVABC CONSTRUCTION

<table>
<thead>
<tr>
<th>LVBI</th>
<th>Intermediate 2 x 50</th>
<th>1012</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVBI</td>
<td>Intermediate 4 x 50</td>
<td>1012</td>
</tr>
<tr>
<td>LVBI</td>
<td>Intermediate 2 x 95</td>
<td>1012</td>
</tr>
<tr>
<td>LVBI</td>
<td>Intermediate 4 x 95</td>
<td>1012</td>
</tr>
<tr>
<td>LVBA</td>
<td>Angle 2 x 50</td>
<td>1013</td>
</tr>
<tr>
<td>LVBA</td>
<td>Angle 4 x 50</td>
<td>1013</td>
</tr>
<tr>
<td>LVBA</td>
<td>Angle 2 x 95</td>
<td>1013</td>
</tr>
<tr>
<td>LVBA</td>
<td>Angle 4 x 95</td>
<td>1013</td>
</tr>
<tr>
<td>LVBT</td>
<td>Termination - material</td>
<td>1014/1</td>
</tr>
<tr>
<td>LVBT</td>
<td>Termination 2 x 50</td>
<td>1014/2</td>
</tr>
<tr>
<td>LVBT</td>
<td>Termination 4 x 50</td>
<td>1014/2</td>
</tr>
<tr>
<td>LVBT</td>
<td>Termination 2 x 95</td>
<td>1014/2</td>
</tr>
<tr>
<td>LVBT</td>
<td>Termination 4 x 95</td>
<td>1014/2</td>
</tr>
<tr>
<td>LVBS</td>
<td>Strain - material</td>
<td>1015/1</td>
</tr>
<tr>
<td>LVBS</td>
<td>Strain 2 x 50</td>
<td>1015/2</td>
</tr>
<tr>
<td>LVBS</td>
<td>Strain 4 x 50</td>
<td>1015/2</td>
</tr>
<tr>
<td>LVBS</td>
<td>Strain 2 x 95</td>
<td>1015/2</td>
</tr>
<tr>
<td>LVBS</td>
<td>Strain 4 x 95</td>
<td>1015/2</td>
</tr>
</tbody>
</table>

L.V. OPEN WIRE CONSTRUCTION

<table>
<thead>
<tr>
<th>LVP</th>
<th>Intermediate</th>
<th>1017</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVA</td>
<td>Angle</td>
<td>1018</td>
</tr>
<tr>
<td>LVT</td>
<td>Termination</td>
<td>1019</td>
</tr>
<tr>
<td>LVS</td>
<td>Strain</td>
<td>1020</td>
</tr>
<tr>
<td>LVCP</td>
<td>Cantilever intermediate construction</td>
<td>2050</td>
</tr>
<tr>
<td>LVCA</td>
<td>Cantilever angle construction</td>
<td>2051</td>
</tr>
</tbody>
</table>

L.V. BRIDGING ARRANGEMENTS

Normal Bridging Arrang'ts ABC and Open wire	1021
Normal Bridging Arrang'ts Open wire	1022
Jumper Bridging Arrang'ts ABC and Open wire	1023
POLE TOP LVABC - CONSTRUCTION CODE

Code shown within dashed box appears on relevant construction detail drawings in this manual.

LV BI /495

VOLTAGE CONSTRUCTIONS CABLE SIZE
LV BI = Intermediate 250 = 2x50mm²
 BA = Angle 295 = 2x95mm²
 BS = Strain 450 = 4x50mm²
 BT = Termination 495 = 4x95mm²
 2495 = 2 - 4x95mm²

EXAMPLE:- LVBI/495 = LV bundled intermediate construction, 4x95 LVABC

POLE TOP OPEN WIRE - CONSTRUCTION CODE

Code shown within dashed box appears on relevant construction detail drawings in this manual.

LV P 3/ 50/ MAR

VOLTAGE CONSTRUCTIONS No. OF PHASES CROSSARM SIZE - WOOD CROSSARM SIZE - COMPOSITE FIBRE
LV P = Pin 1 = Single 50 = 2400x100x100
 A = Angle 2 = Two 51 = 2400x150x100
 S = Strain 3 = Three
 T = Termination CP = Cantilever Pin
 CA = Cantilever Angle

EXAMPLE:- LVP3/50/MAR = LV intermediate pin construction, 3 phase 2400x100x100 x-arm, Mars conductor

CONDUCTOR CODE
LIB = Libra 7/3.0 AAC
MAR = Mars 7/3.75 AAC
MOO = Moon 7/4.75 AAC
PLU = Pluto 19/3.75 AAC
CHL = Chlorine 7/2.5 AAAC
FLU = Fluorine 7/3.0 AAAC
HEL = Helium 7/3.75 AAAC
IOD = Iodine 7/4.75 AAAC
NEO = Neon 19/3.75 AAAC
000 = No conductor fittings

OVERHEAD DISTRIBUTION
L.V. CONSTRUCTION
CONSTRUCTION CODE GUIDE
POLE TOP LVABC AND OPEN WIRE

A ORIGINAL ISSUE
B 29.1.02
C 20.2.12
D 29.8.17

HARD COPY
UNCONTROLLED

Ergon Energy Corporation Ltd
ABN 50 087 646 062

FILE: 5 03 1016 1 Dwg 1016 Sh 1
NORMAL BRIDGE LVABC - CONSTRUCTION CODE

VOLTAGE
LV

BRIDGE TYPE
NBS = Normal Bridge Strain
NBT = Normal Bridge Termination

BRIDGE CONDUCTOR
250 = 2x50mm ABC
450 = 4x50mm ABC
295 = 2x95mm ABC
495 = 4x95mm ABC

MAINS
ABC = LV ABC
LIB = Libra 7/3.0 AAC
MAR = Mars 7/3.75 AAC
MOO = Moon 7/4.75 AAC
PLU = Pluto 19/3.75 AAC

CHL = Chlorine 7/2.5 AAAC
FLU = Fluorine 7/3.0 AAAC
HEL = Helium 7/3.75 AAAC
IOD = Iodine 7/4.75 AAAC
NEO = Neon 19/3.75 AAAC

EXAMPLE:- LVNBS/250-MOO = LV Normal bridge, strain, 2x50mm ABC to Moon mains

NORMAL BRIDGE OPEN WIRE - CONSTRUCTION CODE

VOLTAGE
LV

PHASES
1 = Single
2 = Two
3 = Three

BRIDGE TYPE
NBS = Normal Bridge Strain
NBT = Normal Bridge Termination

BRIDGE CONDUCTOR
LIB = Libra 7/3.0 AAC
MAR = Mars 7/3.75 AAC
MOO = Moon 7/4.75 AAC
PLU = Pluto 19/3.75 AAC

MAINS
LIB = Libra 7/3.0 AAC
MAR = Mars 7/3.75 AAC
MOO = Moon 7/4.75 AAC
PLU = Pluto 19/3.75 AAC

CHL = Chlorine 7/2.5 AAAC
FLU = Fluorine 7/3.0 AAAC
HEL = Helium 7/3.75 AAAC
IOD = Iodine 7/4.75 AAAC
NEO = Neon 19/3.75 AAAC

EXAMPLE:- LVNBS3/LIB-MOO = LV Normal bridge, strain, 3 phase Libra to Moon mains
JUMPER BRIDGE LVABC - CONSTRUCTION CODE

Code shown within dashed box appears on relevant construction detail drawings in this manual.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>BRIDGE TYPE</th>
<th>BRIDGE CONDUCTOR</th>
<th>MAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>JBI = Jumper Bridge Intermediate</td>
<td>260 = 2x50mm ABC</td>
<td>ABC = LV ABC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 = 4x50mm ABC</td>
<td>LIB = Libra 7/3.0 AAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>295 = 2x95mm ABC</td>
<td>MAR = Mars 7/3.75 AAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>485 = 4x95mm ABC</td>
<td>MOO = Moon 7/4.75 AAC</td>
</tr>
</tbody>
</table>

EXAMPLE: LVJBI/250-MOO = LV Jumper bridge, Intermediate, 2x50mm ABC to Moon mains

JUMPER BRIDGE OPEN WIRE - CONSTRUCTION CODE

Code shown within dashed box appears on relevant construction detail drawings in this manual.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>BRIDGE TYPE</th>
<th>PHASES</th>
<th>BRIDGE CONDUCTOR</th>
<th>MAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>JBI = Jumper Bridge Intermediate</td>
<td>1 = Single</td>
<td>LIB = Libra 7/3.0 AAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Two</td>
<td>MAR = Mars 7/3.75 AAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Three</td>
<td>MOO = Moon 7/4.75 AAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PLU = Pluto 19/3.75 AAC</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE: LVJBI3/LIB-MOO = LV Jumper bridge, Intermediate, 3 phase Libra to Moon mains

OVERHEAD DISTRIBUTION

L.V. CONSTRUCTION

CONSTRUCTION CODE GUIDE

JUMPER BRIDGING LVABC AND OPEN WIRE

HARD COPY UNCONTROLLED

ERGON ENERGY

DRAWN

Dwg 1016 Sh 3

50310163.dgn 9/02/2005 10:46:08 AM
MATERIAL

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-2</td>
<td>Clamp suspension 2x60mm²</td>
<td>1</td>
</tr>
<tr>
<td>15-4</td>
<td>Clamp suspension 4x60mm²</td>
<td>1</td>
</tr>
<tr>
<td>15-6</td>
<td>Clamp suspension 2x95mm²</td>
<td>1</td>
</tr>
<tr>
<td>15-8</td>
<td>Clamp suspension 4x95mm²</td>
<td>1</td>
</tr>
<tr>
<td>26-3</td>
<td>Bolt hook to wood pole</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.
2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burned to effectively prevent loosening of the nut.
3. For wood pole attachments and foundations refer to Construction Practices.
5. Refer to L.V. construction drawings 1021 or 1023 for bridging arrangements.
6. Where LVABC is a subsidiary circuit, pole steps above circuit shall be installed as detailed in 11/22/33kV construction.

Construction Type
LVBI
NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.

2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burned to effectively prevent loosening of the nut.

3. For wood pole attachments and foundations refer to Construction Practices.

4. Angle of deviation 25° to 80°.

5. Refer to L.V. construction drawings 1021 or 1023 for bridging arrangements.

6. Where LVABC is a subsidiary circuit pole steps above circuit shall be installed as detailed in 11/22/33kV construction.

Stringing Rollers to suit clamps.
I.I. No. 0104427
MATERIAL

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LVBT 2x50</td>
</tr>
<tr>
<td>16-1</td>
<td>Termination Clamp LVABC to eyebolt</td>
<td>1</td>
</tr>
<tr>
<td>36-13</td>
<td>Eyebolt to wood pole</td>
<td>1</td>
</tr>
<tr>
<td>27-4</td>
<td>End cap - push on 50mm² ABC</td>
<td>2</td>
</tr>
<tr>
<td>27-7</td>
<td>End cap - push on 95mm² ABC</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.

2. After tightening each nut on its bolt, the thread immediately behind the nut shall be buried to effectively prevent loosening of the nut.

3. For wood pole attachments and foundations refer to Construction Practices.

4. Refer to L.V. construction drawings 1021 or 1023 for bridging arrangements.

5. Mounting position for LVABC Switch/Fuse (If req’d)
 Refer Switches Drawing 1162

6. Compression sleeves (If req’d) Refer Assemblies 99-1 to 5.

7. Where LVABC is a subsidiary circuit
 pole steps above circuit shall be installed as detailed in 11/22/33kV construction.

8. Use fillers if only 2 cores are utilised with 4 core termination clamp.
MATERIAL

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-1</td>
<td>Clamp termination LVABC to eyebolt</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x50</td>
</tr>
<tr>
<td>36-13</td>
<td>Eyebolt to pole</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x50</td>
</tr>
</tbody>
</table>

NOTES:
1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.
2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burred to effectively prevent loosening of the nut.
3. For wood pole attachments and foundations refer to Construction Practices.
4. Refer to L.V. construction drawings 1021 or 1023 for bridging arrangements.
5. Mounting position for LVABC Switch/Fuse (If req’d) Refer Switches Drawing 1162
6. Preinsulated Compression sleeves (If req’d) Refer Assemblies 99-1 to 5
7. Where LVABC is a subsidiary circuit pole steps above circuit shall be installed as detailed in 11/22/33kV construction.
8. Use fillers if only 2 cores are utilised with 4 core termination clamp.
Fully ribbed core is neutral

Assy 36-13

Assy 16-1

Refer Note 6, sheet 1

Double circuit position

Switch/Fuse position

Roller Note 6 sheet 1

Stay position

Working steps

See Note 7, sheet 1

Construction Type
LVBS

OVERHEAD DISTRIBUTION
L.V. CONSTRUCTION
LVABC STRAIN

HARD COPY
UNCONTROLLED

Ergon Energy Corporation Ltd
ABN 60 091 946 062

FILE: 510152 Dwg 1015 Sh 2

A
ORIGINAL ISSUE

B
29.1.02

APPROVED

DATE

20.10.02

PASSED

DRAWN

M. Jones
Notes:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.

2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burried to effectively prevent loosening of the nut.

3. For wood pole attachments and foundations refer to Construction Practices.

4. Refer to L.V. construction drawing 1022 or 1023 for bridging arrangements.

5. Painted side of crossarm is to be the top surface when fitted.

Construction Type

Construction Type:

- LVP

Diagram:

The diagram illustrates the assembly of components, including crossarms, bolts, and other structural elements. The assembly process is indicated by numbered steps and positions such as:

- Stay position (300)
- T-off position LVABC (400)
- Working steps (1150)

Table:

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-1</td>
<td>Crossarm (100) LV single to wood pole</td>
<td>1</td>
</tr>
<tr>
<td>22-1</td>
<td>Brace double to LV x-arm (100) and wood pole</td>
<td>1</td>
</tr>
<tr>
<td>23-1</td>
<td>Pin L.V. to X-Arm</td>
<td>2</td>
</tr>
<tr>
<td>153-1</td>
<td>Crossarm Predrilled 2400x100x100</td>
<td>1</td>
</tr>
<tr>
<td>2015-1</td>
<td>Crossarm Composite Fibre 2400x100x100</td>
<td>1</td>
</tr>
</tbody>
</table>

Assy Selection

- Assy 23-1
- Assy 21-1
- Assy 22-1
- Assy Selection 153-1 or 2015-1

Additional Notes:

- Only required with additional circuits (850)
- Crossarm Predrilled 2400x100x100 (153-1
- Crossarm Composite Fibre 2400x100x100 (2015-1
<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>LVP 1 Phase</th>
<th>LVP 2 Phase</th>
<th>LVP 3 Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-1</td>
<td>Crossarm (100) LV single to wood pole</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22-1</td>
<td>Brace double to LV x-arm (100) and wood pole</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>153-1</td>
<td>Crossarm Predrilled 2400x100x100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>79-1</td>
<td>Shackle supported LV to x-arm</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.
2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burned to effectively prevent loosening of the nut.
3. For wood pole attachments and foundations refer to Construction Practices.
4. Mount crossarm on bisect.
5. Refer to L.V. construction drawing 1022 or 1023 for bridging arrangements.
6. Painted side of crossarm is to be the top surface when fitted.
7. Crossarm to be drilled to suit Supported Shackle

OVERHEAD DISTRIBUTION

L.V. CONSTRUCTION ANGLE

FILE: 5 03 10181

Dwg: 1018 Sh
NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.

2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burried to effectively prevent loosening of the nut.

3. For wood pole attachments and foundations refer to Construction Practices.

4. Refer to L.V. construction drawing 1022 or 1023 for bridging arrangements.

5. Painted side of crossarm is to be the top surface when fitted.

For future mains extension, erect additional shackle straps and position as shown.
NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.
2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burried to effectively prevent loosening of the nut.
3. For wood pole attachments and foundations refer to Construction Practices.
4. Refer to L.V. construction drawing 1022 or 1023 for bridging arrangements.
5. Mounting position for LVABC Switch/Fuse (If req'd) Refer Switches Drawing 1162
6. Painted side of crossarm is to be the top surface when fitted.
NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.

2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burried to effectively prevent loosening of the nut.

3. For wood pole attachments and foundations refer to Construction Practices.

4. Kick end of crossarm up 50mm during construction.

5. Not to be used for new constructions.

6. A maximum span of 100m apply's to Libra, Moon, Pluto, 7/0.064, 7/0.080 and 7/0.104 and equivalent conductors.

7. For single phase constructions use the 2 insulator positions that provide the maximum conductor clearance from the structure / building.

MATERIAL

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>1Ø</th>
<th>2Ø</th>
<th>3Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-1</td>
<td>Crossarm LV single (100) to wood pole</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22-5</td>
<td>Brace single to composite crossarm (100)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23-1</td>
<td>Pin LV to Crossarm</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>301-1</td>
<td>Crossarm composite fibre cantilever inter 2700x100x100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction Type

- **Overhead Distribution**
- **L.V. Construction**
- **Cantilever Intermediate Construction**

Non Preferred Construction

- Construction Type: LVCP
MATERIAL

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-1</td>
<td>Crossarm LV single (100) to wood pole</td>
<td>1</td>
</tr>
<tr>
<td>22-5</td>
<td>Brace single to composite crossarm (100)</td>
<td>1</td>
</tr>
<tr>
<td>79-3</td>
<td>Shackle to LV crossarm</td>
<td>2</td>
</tr>
<tr>
<td>301-1</td>
<td>Crossarm composite fibre cantilever inter 2700x100x100</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:

1. All metalwork that passes through or into wood shall be greased for the entire length that may come into contact with the wood.

2. After tightening each nut on its bolt, the thread immediately behind the nut shall be burred to effectively prevent loosening of the nut.

3. For wood pole attachments and foundations refer to Construction Practices.

4. Mount crossarm on bisect.

5. Kick end of crossarm up 50mm during construction.

6. Not to be used for new constructions.

7. A maximum span of 100m apply's to Libra, Moon, Pluto, 7/0.064, 7/0.080, 7/0.104 and equivalent conductors.

8. For single phase constructions use the 2 insulator positions that provide the maximum conductor clearance from the structure / building.

Construction Type

LVCA

OVERHEAD DISTRIBUTION

L.V. CONSTRUCTION

CANTILEVER ANGLE CONSTRUCTION

Ergon Energy Corporation Ltd
ABN 50 087 646 062

FILE: 5 03 2051 1

Dwg 2051 Sh
NOTES:
1. Bridges to be made using strung conductor.
2. Use compression sleeve on Neutral joints where possible.
3. All bridging within 3km of the coast on the neutral mains conductor must be double clamped.
MATERIAL - NORMAL BRIDGE - TERMINATION

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>1 Phase</th>
<th>2 Phase</th>
<th>3 Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-1 to 12</td>
<td>Connector P.G. Al/steel/Cu-Cu</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>88-1 to 7</td>
<td>Connector P.G. Al/steel-Al/steel</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>27-15</td>
<td>Conduit PVC Flexible - 25mm</td>
<td>AR</td>
<td>AR</td>
<td>AR</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL - NORMAL BRIDGE - STRAIN

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>1 Phase</th>
<th>2 Phase</th>
<th>3 Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-1 to 12</td>
<td>Connector P.G. Al/steel/Cu-Cu</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>88-1 to 7</td>
<td>Connector P.G. Al/steel-Al/steel</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27-15</td>
<td>Conduit PVC Flexible - 25mm</td>
<td>AR</td>
<td>AR</td>
<td>AR</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Bridges to be made using strung conductor.
2. Use compression sleeve on Neutral joints where possible.
3. All bridging within 3km of the coast on the neutral mains conductor must be double clamped.
MATERIAL - JUMPER BRIDGE - INTERMEDIATE ABC/ABC

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-10</td>
<td>Connector IPC</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

MATERIAL - JUMPER BRIDGE - INTERMEDIATE ABC/OPEN WIRE

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-1 or 2</td>
<td>Connector Al/IPC</td>
<td>2</td>
</tr>
<tr>
<td>20-3</td>
<td>Connector Cu/IPC</td>
<td>4</td>
</tr>
<tr>
<td>18-10</td>
<td>Connector IPC</td>
<td>4</td>
</tr>
</tbody>
</table>

MATERIAL - JUMPER BRIDGE - INTERMEDIATE OPEN WIRE/OPEN WIRE

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-1 to 12</td>
<td>Connector P.G. Al/steel/Cu-Cu</td>
<td>4</td>
</tr>
<tr>
<td>88-1 to 7</td>
<td>Connector P.G. Al/steel-Al/steel</td>
<td>8</td>
</tr>
<tr>
<td>27-15</td>
<td>Conduit PVC Flexible 25mm</td>
<td>AR</td>
</tr>
</tbody>
</table>

NOTES:
1. Bridges to be made using strung conductor.
2. All bridging within 3km of the coast on the neutral mains conductor must be double clamped.