1. PURPOSE AND SCOPE

The purpose of this Standard Work Practice (SWP) is to standardise and prescribe the method for carrying out a primary injection test on a power transformer. Primary injection is used to verify:

- CT ratio;
- CT polarity;
- Secondary wiring connections;
- Transformer vector group;
- Relay ratio, polarity, star point, vector group and zero sequence compensation settings.

2. STAFFING RESOURCES

EFM competent in the use of test equipment.

Safety Observer.

Required Training and Certificates

Regulatory Training

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2120</td>
<td>Cardio-Pulmonary Resuscitation</td>
</tr>
<tr>
<td>2130</td>
<td>Low Voltage/Switchboard Rescue</td>
</tr>
<tr>
<td>2140</td>
<td>Pole Top Rescue (if required)</td>
</tr>
<tr>
<td>2160</td>
<td>EWP Rescue and Escape (if required)</td>
</tr>
<tr>
<td>3131</td>
<td>Pole Testing for Safe Access (if required)</td>
</tr>
</tbody>
</table>

Additional Training

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4445</td>
<td>Switching Operator and Authorised</td>
</tr>
<tr>
<td>4440</td>
<td>Switching Operator Assistant and Authorised</td>
</tr>
<tr>
<td>4430</td>
<td>Safe Entry to High Voltage Enclosures and Authorised</td>
</tr>
<tr>
<td>4475</td>
<td>Access &/ Test Permit Recipient</td>
</tr>
<tr>
<td>4435</td>
<td>Individual of a Work Group</td>
</tr>
</tbody>
</table>

3. DOCUMENTATION

CS000501F115. Daily/Task Risk Management Plan

ES000901R102. Health and Safety Risk Control Guide

SP0511R01 Transformer Primary Injection Testing Job Safety Analysis

SP0511C01 Transformer Primary Injection Test Report form

SP0511C01R01 Transformer Primary Injection Calculation Spreadsheet (Dyn)

SP0511C01R02 Transformer Primary Injection Calculation Spreadsheet (YNd)

SP0511C01R03 Transformer Primary Injection Calculation Spreadsheet (Ynynd or Ya0d)

SP0511C01R04 Transformer Primary Injection Connection Schedule

SP0511C02 Transformer Primary Injection Competency Assessment
TRANSFORMER PRIMARY INJECTION TESTING SWP

SP0506 Substation Primary Plant and Secondary Systems Field Testing SWP
SP0507 Current Transformer Testing
SP0508 Voltage Transformer Testing
P53 Operate the Network Enterprise Process

AS2374.3.0 – Power transformers - Insulation levels and dielectric tests - General requirements.
Test Equipment Manuals.
Transformer Manual / Manufacturer’s Drawings.

4. KEY TOOLS AND EQUIPMENT

Switching and Access Operating Equipment – PED’s, Live Line Tester, Class 0 gloves. All equipment to be inspected and confirmed within test date prior to use.

Additional PPE as required: Leather work gloves, class 00 gloves, hearing protection, safety eyewear. All PPE to be inspected and confirmed within test date (where applicable) prior to use.

Sun protection to be used when working outdoors.
Safety barriers and warning signs. Insulating mats.
High current injection leads and isolation switch.
Generator, capacitor units, variac.
Shorting leads capable of carrying anticipated current.
Multimeters, including flexible tong for primary current measurement and mA tong for secondary current measurement.

5. TASK STEPS

5.1. Carry out an on site risk assessment

Prior to performing this activity any hazards associated with prerequisite tasks at the worksite shall be identified and assessed with appropriate control measures implemented and documented in accordance with the Daily / Task Risk Management Plan (CS000501F115) and using the Health and Safety Risk Control Guide (ES000900R102).

If any risks cannot be managed or reduced to an acceptable level, do not proceed with the task and seek assistance from your Supervisor.

All of the tests described in this SWP should be carried out with the transformer de-energised and appropriate control measures in place (eg barriers, matting) to prevent inadvertent contact with adjacent live plant or breaching exclusion zones. Furthermore, P53 Operate the Network Enterprise Process is applicable at all times for isolation and earthing.

Issue a Test Permit and follow the requirements of P53 Operate the Network Process.

As described in Substation Primary Plant and Secondary Systems Field Testing SWP SP0506, particular safety risks applicable to Transformers include:

- Contact with high voltage at the transformer primary connections.
- High fault current at the transformer primary connections.
- Unearthed CT and VT secondary winding. Refer to SWP SP0507 and SP0508 for more information associated with current transformers and voltage transformers respectively.
- Open circuit CT secondary terminals.
- Open DLA test terminal on transformer bushing.
- Stored energy in capacitors.
- Working at height hazards.

5.2. Preliminary steps

Use spreadsheets SP0511C01R01, SP0511C01R02 or SP0511C01R03 to calculate the voltage required and series capacitors required to obtain sufficient injection current. All electronic relays have a threshold current below which it is impossible to verify correct operation. This threshold current varies between relay types and current ratings, however generally 50 mA secondary current is the lowest value at which accurate results can be obtained. 10 mA is considered the lowest value at which any meaningful data may be obtained, given that noise will generally be 1 mA or more.

Identify transformer to be tested.

In a substation, ensure the transformer to be tested is de-energised, tested and proved dead and earthed. Erect safety barriers and warning signs and issue Test Permit if applicable. In workshops, testing should be within designated test bays or barricaded and warning signed test areas.

5.3. Isolate protection

During the primary injection, sufficient current may be injected to cause protection to operate. This protection may be related to the transformer protection scheme under test (for example transformer differential protection) or it may be another protection scheme that is unrelated to the scheme under test but uses CTs that will see current during the primary injection (for example bus differential protection). Any such protection should be isolated using an isolation sheet.

5.4. Isolate/short CT secondaries not required for test

In some cases it may be necessary to pass current through CT cores that are not required for the scheme under test – for example high impedance bus differential protection. In this case it is not appropriate just to short the CT secondaries since this would disable the protection, instead the CT core must be isolated from the scheme for the duration of the primary injection and reinstated afterwards. On load tests should be completed after the CT is re-connected to ensure the connections are correct. Any such temporary works should be completed using an isolation sheet.

All CTs that will have primary current passing through them must have a continuous secondary circuit. For new work being commissioned, this is verified by measuring the secondary circuit loop resistance as described in SP0507.

5.5. Connect primary injection source and apply short circuit

Use reference SP0511C01R04 to determine the appropriate connection for the injection source (ie phase to phase or phase to neutral) and the short circuit (ie phase to phase or phase to neutral). These connections have been determined to ensure that positive and zero sequence connections are verified.

Connect the injection source to the transformer via a suitably rated isolating switch and lead. The injection source may be a station service supply or a generator.

When connecting to a transformer neutral bushing, ensure that the neutral is not connected to earth or residual current protection (safety switch) may operate. If the neutral bushing is earthed, the injected current may find multiple parallel paths back to the source.
CAUTION: Ensure that the isolating switch is rated to break capacitive current if series capacitors are used. An under-rated switch may have contacts welded closed during an opening operation. If possible arrange the primary injection leads so the load current can be broken with one of the primary plant HV CBs.

A suitably rated variac may be used to give control of the injection current. Alternatively, a multi ratio step up transformer may be used to control the injection current.

If series capacitors are used, ensure that they are rated for the voltage rise that will occur during testing. Some capacitors (eg single bushing capacitors) need to be insulated from earth, for example on an insulated mat.

CAUTION: Series capacitors are used to cancel out some of the inductive reactance of the transformer under test and may give rise to high voltages.

Example 1 – no capacitors.

A 240 volt source injecting into a 100 ohm transformer gives 2.4 amps injection current.

Example 2 – 35 uF (90 ohm) capacitors.

The net impedance is now 100 – 90 = 10 ohms, with a resultant current of 240 / 10 = 24 amps. The voltage seen at the transformer terminals is however 24 x 100 = 2400 V.

The voltage across the capacitor is 24 x 90 = 2160 V.

CAUTION: Ensure any capacitors are discharged before contacting them.

The conductor used for shorting one winding of the transformer must be suitably rated for the anticipated current. The following ratings can be used for copper stranded insulated conductor.

<table>
<thead>
<tr>
<th>Conductor Size (mm²)</th>
<th>Rating (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>25</td>
<td>110</td>
</tr>
<tr>
<td>35</td>
<td>140</td>
</tr>
<tr>
<td>70</td>
<td>230</td>
</tr>
<tr>
<td>95</td>
<td>280</td>
</tr>
</tbody>
</table>

5.6. Carry out primary injection

It is preferable to slowly increase the injection current from zero using a variac until the target current is reached. This is to avoid undue stress on equipment if the injection current is higher than anticipated.

Nominal tap of the transformer should be used for all injections, unless resonance problems as described below cause excessive current on nominal tap. In this case, use a tap as close to nominal as possible.

For each configuration of SP0511C01R04 in turn, apply the injection voltage and confirm:
- Correct primary currents in the transformer windings using a hot tong, flexible tong or similar.
• Correct secondary currents in all CTs using a mA tong or similar.
• Correct primary and secondary metered values in all protection relays, SCADA and metering.

CAUTION: Earthing transformers often have low continuous current ratings. Ensure that this rating is not exceeded during the primary injection.

Note that if series capacitors are used and the capacitive reactance is very close in value to the inductive reactance of the transformer, then the injection current will change significantly as the transformer tap changes due to change in the transformer reactance. Always commence the injection on a tap position to minimise the current and change taps one step at a time until the target current is reached.

When testing the balance of high impedance transformer differential schemes, note that a high impedance scheme, if not balanced, can cause CT secondary measurements to look inaccurate. Similarly, you can expect a few mA to disappear exciting any idle CTs in high impedance schemes.

CAUTION: If a high impedance scheme is not balanced the out of balance current will flow through the differential relay. This relay will probably not be rated for continuous application of this current. It is therefore necessary to short/isolate the relay prior to commencing injection.

The impedance of some multimeters when on a low current range can significantly alter the current in a CT secondary circuit. It is preferred therefore to use a higher range (i.e., “Amps” not “mA”) so that accurate readings are obtained albeit at a lower resolution. A clip on mA tong can provide better accuracy in some situations.

It is necessary to prove any “balance” type scheme such as differential or restricted earth fault in both the balanced and unbalanced state. This is because a zero reading in the balanced state may be due to a wiring or application error, not a true balanced condition. It may be necessary to temporarily reverse or short out CT secondaries or disconnect them from the circuit in order to simulate the unbalanced state. Always check (by measurements) that any temporary connection has been properly reversed afterwards. Normally a better result is obtained by reversing the CT connections, since this will give twice the “operate” current compared to the “restrain” current.

Record all measurements on form SP0511C01. Use a separate form for each test configuration. There is no need to repeat similar measurements between tests – for example when completing test “1a” only record the measurements that have changed from test “1”.

5.7. Return plant to normal on completion of tests

Disconnect and remove all injection equipment.
Check all CT secondary connections are left in the correct state.
Reverse any isolation sheets.
Reverse HV isolation.