South West change for ripple receivers

Contractors operating in South West Queensland’s Maranoa and Warrego regions need to start including provision for ripple receivers into new installations.

Contractors operating in South West Queensland’s Maranoa and Warrego regions need to start including provision for ripple receivers into new installations. The Frequency Injection Generator which controlled the hot water relays (ripple receivers) at Maranoa premises has been out of commission for several years, and contractors have not had to wire installations to accommodate the receivers.

However, the generator is set to return to service by mid-2014, meaning that installations should now be wired as per the following drawings in Section 8 of the Queensland Electricity Connection and Metering Manual (QECMM):

- ECMM 8.4 Principal Tariff (11) and HW Tariff (31 or 33) – 1 Phase Install
- ECMM 8.2 Principal Tariff (11) and HW Tariff (31 or 33) – 2 Phase Install
- ECMM 8.5 Principal Tariff (11) and HW Tariff (31 or 33) – 3 Phase Install

Section 8 also contains information and drawings for other specialised installations that require the use of a ripple receiver.

Ripple receivers must be installed at Augathella, Charleville, Cunnamulla, Injune, Mitchell, Morven, Muckadilla, Mungallala, Quilpie, Roma, Surat, Thargomindah, Wallumbilla and Yuleba installations.

However, installations supplied by SWER networks and the St George system supplying Bolt, Dirranbandi, Hebel, Nindigully, St George and Thallon do not require ripple receivers to be installed. Installations in these areas should be wired as per the following drawings in Section 8 of the Queensland Electricity Connection and Metering Manual:

- ECMM 8.3 Principal Tariff (11) and HW Tariff (31 or 33) – 1 Phase Install
- ECMM 8.2 Principal Tariff (11) and HW Tariff (31 or 33) – 2 Phase Install
- ECMM 8.5 Principal Tariff (11) and HW Tariff (31 or 33) – 3 Phase Install
- For drawings ECMM 8.2 and ECMM 8.5 refer to Note 6 on the drawing.

From February 1, 2014, any installation that does not comply with the receiver installation requirements outlined above will not have the controlled load tariff connected, and a Form B will be issued. If a second visit is required, a fee may also be incurred.
Solar questions answered

Ergon Energy’s business customers are increasingly requesting information about solar PV systems, so we’ve lined up one of our experts to provide some answers.

For customers wanting to take advantage of solar to reduce their electricity costs, we recommend they find a reputable supplier who is established in their local area. It’s also important to ensure suppliers have an installer who is accredited under the Clean Energy Council Accreditation Scheme.

As some parts of the network are unable to accommodate solar PV systems, customers should wait until they receive written approval from Ergon before paying a deposit to a supplier, and certainly before they proceed with actually installing the system.

For more solar tips and advice, view the solar video in our new Q&A series on the Ergon Energy website.

Metering enclosures on temporary structures must be sound

If a meter enclosure is installed on a temporary structure (typically for the connection of permanent or temporary supply for domestic building purposes in a URD estate), the supporting structure has to be sound.

The metering enclosure must be securely attached to a pole, post, wall, floor or other structure unless of a stable, freestanding design which can accommodate external forces which might be exerted on switchboard (e.g. by flexible cords).

It’s important to note that any switchboard installed on a construction or demolition site must comply with the requirements of AS/NZS 3012.
Changes to QECMM Clause 7.7.2

An important error has been identified with clause 7.7.2 of Version 8 of the QECMM. Effective immediately, the following clause applies:

Clause 7.7.2

Where work is performed on an existing installation, compliance with the following requirements must be satisfied:

Electrical Additions and Alterations (Major) - Where major upgrades are carried out to a customer installation (e.g. consumer’s mains upgrade, meter enclosure replacement, replacement of a meter panel not housed in an enclosure) the location of the meters shall comply with all requirements of Section 7.

Note: refer also to clause 5.4.5 (d) for requirements to relocate overhead service point of attachment where major alterations are carried out.

Electrical Additions and Alterations (Minor) - Where minor upgrades are carried out to a customer installation (e.g. additional tariff or IES metering, load centre change, replacement of a meter panel within an enclosure where the enclosure is not being replaced) the meters may be left in the existing location, provided the metering location is suitable to the metering provider (refer to Clause 7.7.3 for unsuitable locations).

Building Renovations / Alterations - Where building alterations or similar works are carried out to premises which results in the metering equipment no longer being in a position that is suitable to the metering provider (refer to Clause 7.7.3 for unsuitable locations), the customer shall, at their expense, relocate the metering equipment to an acceptable position complying with Section 7.

Other Repairs and Damage caused outside a person’s control (e.g. Natural Disaster) – Compliance with Section 7 is required where the metering is located in an unsuitable location (refer to Clause 7.7.3). In instances where the metering is not located in an unsuitable location, repairs may be carried out by “using methods that were acceptable when that part of the electrical installation was originally installed”, provided those methods satisfy the fundamental safety principles of Part 1 of AS/NZS 3000.

In addition to the above, all new or replacement metering panels must also comply with clause 7.6.
Get Connected with new videos

Connect is Ergon Energy’s newsletter for business customers providing tools, tips, guides and resources to help understand and manage your energy use and keep your employees safe around electricity. Connect Issue 3 introduces new online videos where we answer business customers’ questions. We’re also sharing information from our 2012-2013 Stakeholder Report, highlighting how we’re working to be more efficient and to deliver maximum economic value to Queensland.

The easiest way to get Connect is via email – you’ll receive information more frequently on a broader range of topics, and it’s easy to register as many employees as you like. Go to ergon.com.au/your business/saveonyourbill

$100 customer cash back still on offer

Ergon Energy and Energex are already helping to ensure Queenslanders get great savings on their hot water system running costs.

Ergon is offering up to $100 cash back for customers to help cover the cost of connecting their existing or new hot water systems to either Tariff 31 or Tariff 33. Tariff 33 represents a great option for hot water system owners, offering customers potential savings of up to 20 per cent.*

For more information and to help customers change their hot water systems to an economy tariff and save on future running costs, visit www.yourpowerqld.com.au. Offer ends 30 June 2014.

*Based on comparing notified prices for Tariff 11 with Tariff 31 and 33, effective 1 July 2013.

yourpowerqld.com.au
Hi-tech hot water

With electric hot water systems accounting for around 27 per cent of Queensland home electricity use*, there’s never been a better time to seek out smarter solutions, especially as the State Government and hot water system manufacturers are turning their attention to options which help consumers to get the most out of electricity tariffs.

At least one hot water system manufacturer has introduced a programmable timer on selected models, putting users in charge of the appliance’s electricity usage. Customers on Time-of-Use tariffs are able to avoid reheating water during peak tariff periods, potentially resulting in significantly lower running costs while still meeting their household’s needs.**

Smart appliance solutions for hot water systems are also being considered, with the inclusion of hot water systems in the Demand Response Standard AS/NZS 4755.3.3. This type of technology will be particularly useful in instances where electricity utilities provide incentives for customers to play their part in reducing peak demand. It may also present an attractive alternative in locations where economy tariffs are unavailable due to factors such as significant wiring or metering alterations.
