<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>DESCRIPTION</th>
<th>DWG No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB - - 1S</td>
<td>100kN Stayed Bollard - Material List</td>
<td>5-11-3-1</td>
</tr>
<tr>
<td>CB - - 1S</td>
<td>100kN Stayed Bollard - Construction</td>
<td>5-11-3-2</td>
</tr>
<tr>
<td>CB - - 1U</td>
<td>100kN Unstayed Bollard - Material List</td>
<td>5-11-4-1</td>
</tr>
<tr>
<td>CB - - 1U</td>
<td>100kN Unstayed Bollard - Construction</td>
<td>5-11-4-2</td>
</tr>
<tr>
<td>CB - - 2S</td>
<td>200kN Stayed Bollard - Material List</td>
<td>5-11-5-1</td>
</tr>
<tr>
<td>CB - - 2S</td>
<td>200kN Stayed Bollard - Construction</td>
<td>5-11-5-2</td>
</tr>
</tbody>
</table>
BOLLARD CONSTRUCTION:

Small world object type: Pole

BOLLARD POLES

- TYPE: C (Concrete), S (Steel (future)), W (Wood (Future))
- LENGTH: 0m, 2m, 4m, 6m, 10m, 12m, 14m, 16m

BOLLARD CAPACITY

- 1: 100kN Bollard
- 2: 200kN Bollard

POLE TYPE

- B: Bollard

STAYED

- S: Stayed
- U: Unstayed

SOIL TYPE

- N: Normal soil
- B: Black soil

C B 1 2 1 S N
<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>CB101SN</th>
<th>CB121SN</th>
<th>CB141SN</th>
<th>CB161SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080-1</td>
<td>Reverse back to back stay brackets</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1150-1</td>
<td>10m x stayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150-2</td>
<td>12m x stayed bollard concrete pole</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150-3</td>
<td>14m x stayed bollard concrete pole</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1150-4</td>
<td>16m x stayed bollard concrete pole</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Twin Aerial Stay Arrangement

Strength limit state tip capacity determined by number of ground stays.

Notes

1. Foundation design for cohesive soils with shear strengths of 100kPa or greater.

Stayed Bollard

Tip of C6S0L / C6RSDI30kN Pole

Table

<table>
<thead>
<tr>
<th>Overall bollard length (m)</th>
<th>'H1' Attachment height (m)</th>
<th>'R1' Tip rake (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7.3</td>
<td>750</td>
</tr>
<tr>
<td>12</td>
<td>9.3</td>
<td>950</td>
</tr>
<tr>
<td>14</td>
<td>11.3</td>
<td>1150</td>
</tr>
<tr>
<td>16</td>
<td>13.3</td>
<td>1350</td>
</tr>
</tbody>
</table>

Construction Code

CB101SN
CB121SN
CB141SN
CB161SN
<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>CB101UN</th>
<th>CB141UN</th>
<th>CB161UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1079-8</td>
<td>Stay brackets & backing plate (700)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1079-7</td>
<td>Stay brackets & backing plate (650)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1079-6</td>
<td>Stay brackets & backing plate (600)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1151-1</td>
<td>10m x unstayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1151-2</td>
<td>12m x unstayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1151-3</td>
<td>14m x unstayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1151-4</td>
<td>16m x unstayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL

OVERHEAD SUB-TRANSMISSION

BOLLARD CONSTRUCTION

100kN UNSTAYED BOLLARD

MATERIAL

Approved
P DE SOUSA ROQUE

Date
7/08/2013

Checked
R MARGANI

Drawn
K STOLZ

Ergon Energy Corporation Ltd
ABN 50 087 646 062

DRAWING NUMBER: 5-11-4-1

<table>
<thead>
<tr>
<th>VOLUME</th>
<th>FOLDER</th>
<th>PAGE</th>
<th>ISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
<td>4-1</td>
<td>0C</td>
</tr>
</tbody>
</table>
Unstayed Bollard
Base of 80kN Pole

Refer Pole Stay
Construction Folder

Assy Selection
1079-6 to 8

Fill tip with concrete
to depth of 300mm
in lieu of pole cap

Assy Selection
1151-1 to 4

Over size hole required
if bored vertically

Twin Aerial Stay Arrangement

Refer Pole Stay
Construction Folder

<table>
<thead>
<tr>
<th>Overall bollard length 'L' (m)</th>
<th>'T' Tip Ø (mm)</th>
<th>'R2' Tip rake (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>435</td>
<td>610</td>
</tr>
<tr>
<td>12</td>
<td>465</td>
<td>770</td>
</tr>
<tr>
<td>14</td>
<td>465</td>
<td>930</td>
</tr>
<tr>
<td>16</td>
<td>495</td>
<td>1090</td>
</tr>
</tbody>
</table>

Construction Code
CB101UN
CB121UN
CB141UN
CB161UN

'LBa' (m)

'G.L.'

1:8 cement stabilised backfill
and compacted in 200mm layers

10-7-3-3

Construction Folder

Refer Pole Stay
Construction Folder

Unstayed Bollard
Base of 80kN Pole

'LO' (m)

Length

'Bollard'

Overall

R2

1151-1 to 4

Assy Selection

'Pole Cap'

Fill tip with concrete
to depth of 300mm
in lieu of pole cap

Over size hole required
if bored vertically

1:8 cement stabilised backfill
and compacted in 200mm layers

Unstayed Bollard
Base of 80kN Pole

Refer 5-7-3-3

'LO' (m)

Length

'Bollard'

Overall

R2
MATERIAL

<table>
<thead>
<tr>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>CB102SN</th>
<th>CB122SN</th>
<th>CB142SN</th>
<th>CB162SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080-1</td>
<td>Reverse back to back stay brackets</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1150-1</td>
<td>10m x stayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150-2</td>
<td>12m x stayed bollard concrete pole</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150-3</td>
<td>14m x stayed bollard concrete pole</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150-4</td>
<td>16m x stayed bollard concrete pole</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

OVERHEAD SUB-TRANSMISSION

BOLLARD CONSTRUCTION

200kN STAYED BOLLARD

MATERIAL

- **MATERIAL**
 - 10m x stayed bollard concrete pole
 - 12m x stayed bollard concrete pole
 - 14m x stayed bollard concrete pole
 - 16m x stayed bollard concrete pole

Ergon Energy Corporation Ltd

ABN 50 087 646 062

Approved

P DE SOUSA ROQUE

Date

7/08/2013

Checked

R MARGANI

Drawn

K STOLZ

DRAWING NUMBER: 5-11-5-1

VOLUME	FOLDER	PAGE	ISSUE
5 | 11 | 5-1 | 0A |
STAYED BOLLARD

Notes
1. Foundation design for cohesive soils with shear strengths of 100kPa or greater

<table>
<thead>
<tr>
<th>Overall bollard length (m)</th>
<th>'H1' Attachment height (m)</th>
<th>'R1' Tip rake (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.8</td>
<td>750</td>
</tr>
<tr>
<td>12</td>
<td>8.8</td>
<td>950</td>
</tr>
<tr>
<td>14</td>
<td>10.8</td>
<td>1150</td>
</tr>
<tr>
<td>16</td>
<td>12.8</td>
<td>1350</td>
</tr>
</tbody>
</table>

For biscuit

Over size hole required if bored vertically

1:8 cement stabilised backfill and compacted in 200mm layers

Twin Aerial Stay Arrangement

Strength limit state tip capacity determined by number of ground stays

STAYED BOLLARD

Tip of C6S0L / C6RSDI30kN Pole

Construction Code
CB102SN
CB122SN
CB142SN
CB162SN

OVERHEAD SUB-TRANSMISSION
BOLLARD CONSTRUCTION
200kN STAYED BOLLARD CONSTRUCTION

DRAWING NUMBER: 5-11-5-2

VOLUME FOLDER PAGE ISSUE
5 11 5-2 0A