Access Track
Construction
Standard and
Specification
Table of Contents

Purpose and Scope 1
Responsibilities 1
Definitions, Abbreviations and Acronyms 1
References 2
1. Access Track Construction Standards and Specifications 3
 1.1. Track Formation 3
 1.2. Track Surface 3
 1.3. Slashing 3
 1.4. Blading 3
 1.5. Patch Gravelling 3
 1.6. Principles of Access Track Location 4
 1.7. New Track Design Considerations 4
 1.8. Location of New Tracks 5
 1.9. Access Track Standards and Specifications 6
 1.10. Road Drainage 7
 1.11. Crowned Surface Formation 7
 1.12. Side Cut Construction 8
 1.12.1 Crowned Side Cut Formation 8
 1.12.2 Out slope Formation 8
 1.13. Watercourse Crossings 10
 1.13.1 Guideline – Activities in a Watercourse, Lake or Spring 10
2. Construction and Maintenance of Drainage, Erosion and Sediment Controls 11
3. Drainage Control Methods 11
 3.1. Catch Drains 11
 3.2. Table Drains 11
 3.3. Turn-Out Drains 12
 3.4. Rock Floodways 12
 3.5. Culvert 12
 3.6. Inverts 12
 3.7. Removal of Drainage Controls 13
4. Erosion Control 13
 4.1. Whoa Boys 13
 4.2. Fibre Matting 13
5. Sediment Control Methods 14
6. STABILISATION TECHNIQUES 14

Check this is the latest Process Zone version before use.
Reference NA000403R376 Ver 4
Access Track Construction Standard and Specification

7. Access Gates and fences
 7.1. Erection of New Fences
 7.2. Gate Post Removal (Contaminated Timber)
Access Track Construction Standard and Specification

PURPOSE AND SCOPE
This reference describes the standard and specifications for the construction and maintenance of access tracks that are used to provide access for installation, repair and routine maintenance of Ergon Energy assets.

RESPONSIBILITIES
Executive General Manager Asset Management is the Process Owner responsible for approving this Reference document.
The Line Standards Manager is responsible for maintaining this reference document.
The Manager Vegetation and Sustainable Pole Forests is the Subject Matter Expert (SME) for the content of this Reference document.

DEFINITIONS, ABBREVIATIONS AND ACRONYMS
Batter/Slope Face means the vertical (usually on an angle) surface of an area that has been cut or filled to create a bench or track.
Blading means the removal of soil or organic matter by an earthmoving machine to provide an even surface.
Disturbed/Unprotected Surfaces means surfaces that have been stripped bare of vegetation cover or ripped up during the course of doing work activities and which remain unprotected and susceptible to erosive forces (i.e. rain, wind)
Drawings means the route plan, construction plan or similar, including schedules and/or maintenance instructions, where supplied.
Drop Pipe means a pipe that has been placed to carry water down a batter/slope through a dedicated point (the pipe) in a way that will prevent erosion of the soil surface.
Landholder means the owner, occupier or Authority having jurisdiction over the particular parcel of land, easement, Government controlled land or similar.
Patch Gravelling is a process of laying a mixture of coarse mineral particles larger than 2mm, but less than 75mm in equivalent diameter on the driving surface of an access track/road
Run-off means water from rainfall that is not absorbed or detained, and so becomes surface flow.
Sheet Flow means where run-off water travels over the ground surface in a wide sheet.
Stabilise means protecting a surface to prevent (further) erosion of an area – can use vegetation or artificial means (e.g. rock, concrete, or matting).
Stable Outlet Area means the point at which water discharges from a drain, channel or other drainage structure, and which is adequately protected from erosion and is stable under current conditions.
Supervising Officer means the person responsible for onsite supervision of work determined by Ergon Energy.
Access Track Construction Standard and Specification

Toe of Batter/Slope means the bottom point or edge of a batter/slope

REFERENCES

ES000905R101 EPW - Environmental Issues (Reference)
ES000904W104 Implement Controls - Handling and Disposal of Redundant Poles (Work Instruction (Manual))
ES000904R121 Soil Erosion and Sediment Control (Reference)
NA000403R329 Guidelines for Access Track Inspection and Maintenance (Reference)
NA000403R420 Standard Field Gate Requisitioning and Installation Guideline Maintenance Reference Standard
RSC04 Clearing and Access Works for Overhead Powerlines (Specification)
STNW0601 Standard for Vegetation Management (Standard)
STNW0602 Standard for Vegetation Clearing Profile (Standard)
STNW0603 Standard for Vegetation Management in Riparian Areas

Code of Practice for “Maintenance of Electricity Corridors in Queensland’s Parks and Forests and the Wet Tropics World Heritage Area”
Roads in Rainforest: Best Practice Guidelines for planning, design and management
Field Guide Code applying to a Native Forest Practice on Freehold Land
Guideline – Activities in a Watercourse, Lake or Spring carried out by an Entity Department of Environment and Resource Management – Water Management
Land Protection (Pest and Stock Route Management) Act 2002 (Act)
Water Act 2000 (Act)
Water Regulation 2002 (Act)
1. ACCESS TRACK CONSTRUCTION STANDARDS AND SPECIFICATIONS

1.1. Track Formation

Track formation is required for the following reasons:

- Drainage control, especially in areas where erosion or sediment influences are evident, any vegetation, topography, wheel rutting or compaction is likely to intercept, concentrate and channel water.
- Where the topography of the track location or the drainage characteristics of the soil are likely to hinder access for a protracted time period following rain (e.g. 1 to 2 weeks).
- Where natural side-slope pose a safety hazard to potential users of the track (e.g. Patrolling Officers, Contractors and Land Owners).

Often track formation can reduce or eliminate the need for patch gravelling. Where gravelling is still considered to be warranted, the formation process can remove undesirable material and/or box the imported material where it is required.

1.2. Track Surface

Where a ground cover exists and no active erosion is occurring, access and drainage control structures should be maintained by slashing and limited blading, to level ant-hills, debris, obstructions, trees, brush and sediment.

1.3. Slashing

Slashing should be considered as the preferred maintenance option if minimal weed, erosion or drainage issues are evident.

A distinguishable, grassed track surface is considered ideal for normal access purposes.

1.4. Blading

Blading shall be kept to a minimum on existing formed tracks and on track locations not requiring formation.

In these situations, blading should only be performed to remove potential traffic hazards (e.g. fallen limbs, stakes, etc.) or to repair potential environmental or safety hazards (e.g. ant hills, drainage, restrictions, washouts, wheel ruts, etc).

Where formation of the access is required, blading shall be to the design requirements detailed within this guideline or to the directions from Ergon Energy.

1.5. Patch Gravelling

Patch gravelling provides protection and stability on track sections that are susceptible to rapid deterioration through the influences of traffic, water or wind or where the soils do not have a high load bearing capacity. Patch graving should be used only when required to ensure traction, stability, avoid rutting, or to maintain effective drainage.
Access Track Construction Standard and Specification

No patch gravelling should be undertaken without the approval of the Supervising Officer.

1.6. Principles of Access Track Location

The most important consideration when there is a need to relocate the track alignment or construct a new access is to decide on the type of vehicle that will use the track. Different vehicles have limitations and also seasonal conditions have a big effect on the ability of various vehicles to utilise the track. For example, two wheeled drive vehicles are limited by clearance and traction, with a gradient limit of about 15 degrees maximum on a dry clay pavement. Large trucks have the same traction and gradient limitations and require wider track widths especially on bends.

<table>
<thead>
<tr>
<th>Vehicle Configuration</th>
<th>Slope %</th>
<th>Slope Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Clearance 4WD</td>
<td>30%</td>
<td>18°</td>
</tr>
<tr>
<td>High Clearance 2WD</td>
<td>20%</td>
<td>11°</td>
</tr>
<tr>
<td>Low Clearance 2WD</td>
<td>18%</td>
<td>10°</td>
</tr>
<tr>
<td>Rigid Body Truck</td>
<td>15%</td>
<td>8°</td>
</tr>
<tr>
<td>Articulated Truck</td>
<td>10%</td>
<td>5°</td>
</tr>
</tbody>
</table>

The standard of track construction will also be influenced by:

- The susceptibility of the soils to erosion. Look for signs of erosion from water.
- The need for stream crossings. Look for existing crossings. The number of stream crossings should be minimised to reduce disturbance to streams.
- Landowner requirements. Some tracks are shared with landowners for various types of vehicle access, pedestrian access, cattle mustering and for horse riding.
- Third party use. Members of the public may use access tracks for recreational purposes like access to fishing and swimming areas, trail bike and motor-cross riding and 4WD activities.
- Environmental and Cultural Heritage considerations. Be aware of cultural and heritage issues, and look out for protected or endangered species of wildlife and vegetation.

1.7. New Track Design Considerations

It is preferred that new construction is a last resort to remedy access defects because of the impacts of new track construction. Where tracks are impassable, eroded or overgrown, there may be opportunities to rebuild the track in a better location, to reduce long term environmental impact. The following should be taken into consideration when constructing a new track:

- Satisfy Landholder requirements
- Be safe for all users (vehicles, pedestrians, animals)
- Provide satisfactory stable access with reasonable travel speeds
- Minimise the effect on the natural and cultural environment
- Reduce the possibility for water pollution (siltation) and erosion
- Minimise future maintenance needs
Access Track Construction Standard and Specification

• Plans and Permits

Areas such as Riverine Zones, Fish Habitat Areas, Acid Sulphate Soil Areas, Remnant, Endangered or Of Concern Regional Ecosystems, State Forests, National Parks and Wet Tropics World Heritage Areas, require special permits and plans for work and may cause delays to the commencement of work. Construction work shall not commence on any site until the requirements of ES000905R101: Environmental Planning for Work-Environmental Issues have been completed and the necessary permits have been issued to enable the work to proceed. Ensure that these plans and permits are in place and copies available in job packs before any work commences on site.

1.8. Location of New Tracks

Tracks should be located on ridge lines wherever possible with the path of the track to follow bench shape profiles to minimise side-cutting. Where side-cutting is necessary, the formation should conform to the relevant standard profiles.

When locating a new track, aerial photos and topographic maps are used to identify potential locations. The final location shall incorporate the following concepts:

• Follow the contour of the land or ridge tops where possible.
• Avoid areas of steep slope and minimise the amount of earth to be moved.
• Minimise disturbance to natural vegetation, as this can affect soil stability.
• Use natural features such as benches or shelves.
• Minimise the number of stream crossings or drainage structures required.
• Avoid areas of poor drainage such as swamps and soaks.
• Avoid routes that run parallel to or close to streams.
• Try to keep tracks close to or on the powerline corridor or areas of previous disturbance.

Avoid disturbance to:

• Significant vegetation communities (endangered or of concern)
• Cultural Heritage Sites
• Any land without consultation with the landowner.
Access Track Construction Standard and Specification

1.9. Access Track Standards and Specifications

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formation</td>
<td>Crowned with cross fall of 1-3 degrees on ridge top or flat ground</td>
</tr>
<tr>
<td></td>
<td>Outslope with 1-3 degrees outfall in side cut locations.</td>
</tr>
<tr>
<td>Pavement Surface</td>
<td>Natural weathered surface with patch gravelling on clay soils where necessary to improve trafficability. The desirable surface is short grass to minimise erosion.</td>
</tr>
<tr>
<td>Pavement Width</td>
<td>2.8 metres minimum, 4 metres maximum<sup>1</sup></td>
</tr>
<tr>
<td>Shoulder Width</td>
<td>0.6 metres</td>
</tr>
<tr>
<td>Clearing width for track, if track is away from powerline corridor</td>
<td>1 metre either side of earthworks (track formation)</td>
</tr>
<tr>
<td>Maximum Gradient</td>
<td>9 degrees but may be steeper where construction results in less disturbance and the surface provides good traction.</td>
</tr>
<tr>
<td>Formation in Wet Tropics</td>
<td>3 metres wide formation, 4 metres high to vegetation</td>
</tr>
</tbody>
</table>

¹The maximum road width (pavement plus shoulders) specified in the Code of Practice for “Maintenance of Electricity Corridors in Queensland’s parks and forests, and the Wet Tropics World Heritage Area” is 4.5 metres.
1.10. Road Drainage

The illustration below shows where pipes are used to drain the track. The portion at the top of the illustration is an end view or cross-section of the land.

1.11. Crowned Surface Formation

This is a formation of earth raised on the centre line of the track alignment sloping back toward the base of drainage structures on each side of the track. Soil recovered from the drainage structure construction provides material for the crown of the track as shown in the figure below.

The Crowned Surface Formation:

- Is suitable for tracks where water can be shed from both sides of the formation.
- Alternatively in conjunction with appropriate cross track drainage techniques and protection systems.

1.12. Side Cut Construction

Refers to cutting through natural topography with battered banks down to table drains and track formation.

Where side cutting is necessary, construction should be as follows:

1.12.1 Crowned Side Cut Formation

This design is similar to the Crowned Surface Formation but includes a side cut to one side of the track and without a drainage structure on the opposite side. The excavation to form this drain provides all material for the formation as shown below.

Crowned Side Cut Formations are suitable for smaller lengths of side cut where water can be shed from the confined water table further down the road e.g. ridge top saddle.

Sometimes the Crowned Side Cut Formations can be used in limited situations for longer runs if used in conjunction with acceptable cross track drainage techniques.

1.12.2 Out slope Formation

This out slope (or one way cross fall) design is considered when construction access on a side slope and the intention is for surface water to continue to flow across the track surface from the uphill side. Water is not captured in any drainage structure and will not follow the path of the track as illustrated in the diagram below.
Out slope Formations are:

- Suitable for longer lengths of side cut where water cannot be shed via cross track drainage.
- This design profile should be used in the absence of cross drainage techniques such as a pipe or a whoa boy.

The side cutting design is as follows:

Water flows across the track and down the slope

Provide passing areas at 100 metre spacing with a 6 metre wide and 20 metres long Travel Surface.
1.13. Watercourse Crossings

When selecting and constructing a crossing through a watercourse or riverine area the notes in the following diagram should be taken into consideration:

- Divert drainage to undisturbed vegetation
- Site in straight section and aligned at right angles
- Minimal disturbance of banks and vegetation except on crossing alignment
- Cross where banks low and bed stable

Source: Code of practice for native forest timber production – Environmental Protection Agency 2002; p49.

Where the Contractor considers there may need to be a variance from the following criteria and requirements, advice should be sought from the Supervising Officer regarding the issue of an application for a Riverine Protection permit.

1.13.1 Guideline – Activities in a Watercourse, Lake or Spring

Through the Guideline – Activities in a Watercourse, Lake or Spring carried out by an entity issued by the Department of Environment and Resource Management – Water Management, permission has been granted to Queensland Electricity Distribution and Transmission entities for works within or near a watercourse under Sections 49, 50 or 51 of the Water Regulation 2002 to reduce the need for riverine protection permits under Section 269 of the Water Act 2000.

The requirements are:

- When materials are to be deposited or excavated, the volume shall not exceed 500m³ for each activity.
- The clearing of vegetation must not exceed 0.25 ha.
- Works that will impact on water flows or levels will require a riverine permit.
- Necessary measures must be in place to control sediment and erosion on and off the work site during all stages of work (before, during and after). Clean water must be diverted around the work site.
- Spoil and waste material must be disposed according to Specification RSC04: Clearing and Access Works for Overhead Powerlines, STNW0601: Standard for Vegetation Management
Access Track Construction Standard and Specification

and STNW0602: Standard for Vegetation Clearing Profile or in a manner acceptable to the landholder and away from flood zones.

• Adjoining property owners must be notified of works to be completed and permission must be obtained before works commence.
• Environmental Management Plan must be completed prior to commencement of works.
• Machinery to be used must be fit for purpose and free from oil or contaminant leaks.
• Site inductions, daily work plan and risk assessments must be completed prior to commencing work activities. Continually monitor, review and communicate to all personnel during all phases of the work activity.
• Photographs must be taken of site prior, during and on completion of works.
• Full details of before, during and after the maintenance of a water crossing in a water-course are required to be recorded on form MN000301F137: Water Crossing Works Checklist
• On approach to watercourse crossings, cross slowly so as not to create wash and increase erosion. Construct crossings below lagoons and at 90° where possible.

2. CONSTRUCTION AND MAINTENANCE OF DRAINAGE, EROSION AND SEDIMENT CONTROLS

For general measures to deal with sediment and erosion control issues the Reference ES000904R121: Soil Erosion and Sediment Control shall apply.

3. DRAINAGE CONTROL METHODS

A number of the following drainage control methods should be used in order to minimise the impact of erosion and sedimentation under various site conditions. Detailed guidance on installation and maintenance of different drainage structures can be found in Attachment 1 of ES000904R121 Soil Erosion and Sediment Control and NA000403R329 Guidelines for Access Track Inspection and Maintenance.

3.1. Catch Drains

Catch drains are used to intercept and divert up-slope run-on water away from disturbed areas to a stable outlet. They are placed in the path of water that can pass onto the work site (e.g. at the top of a batter/slope). Catch drains may also be installed in conjunction with fibre matting, mulching, or other approved ground stabilisation in areas where rainfall is high and batters/slopes are steep.

3.2. Table Drains

Table drains are used to carry run-off water along the sides of roads and tracks. They will often be installed in conjunction with Whoa Boys. Water flow should be intercepted and dispersed from table drains at safe locations at least every 3 metres of vertical fall of the track centre line.
3.3. Turn-Out Drains
Turn-out drains are used to carry water from Table drains to stable outlet areas. They will often be installed in conjunction with Whoa Boys. Turnouts are also called side or spur drains. Generally they:

- Should be as short as possible.
- Should be terminated in as wide (level) a discharge as is practical.
- Should run at approximately 1.5% grade (the lead out of the table drain may exceed this limit but must not be more than 1.5 metre in length).
- Must have an effective table drain stop.
- Should extend as far as is required to prevent discharged water from flowing back to the road further down the slope.
- Must discharge onto stable areas of undisturbed vegetation and not onto fill slopes, exposed soils or directly into a water course.
- Where a stable outlet does not exist, a drop pipe may be required.

3.4. Rock Floodways
Rock Floodways are used to carry water from table drains across the access to stable outlet areas. They will often be installed in conjunction with curved and flat ‘U’ table drains and formed up accesses.

They are a section of the track surface that is lowered to the level of the adjacent drainage structure. The surface is lined with rock and compacted to form a stable surface for vehicles and plant to negotiate.

They are a low maintenance structure that provides a stable cross flow of run-off. The approach and departure points of the rock surface should be constructed with rock and compacted, and the angles should be no greater than 1 in 5.

3.5. Culvert
A culvert is defined as any pipe box or arch construction used for cross road drainage that is covered by, and below the surface of the road. Culverts are only to be installed with Ergon Energy’s approval.

Existing culverts are to be preserved and culvert heads left in a clean and functional condition. If existing culverts are damaged during maintenance or found in such a state, the location and extent of damage should be recorded and relayed to Ergon Energy’s Representative within 24 hours.

3.6. Inverts
Inverts are man-made or naturally occurring open topped depressions in the surface of the roadway which allow for concentrated cross road drainage.
3.7. Removal of Drainage Controls

There is generally no need to remove drainage controls if constructed from naturally occurring materials. As long as they are maintained and the control is adequate, they can stay in place permanently.

Where removal is required:

• remove accumulated sediment and dispose of it properly;
• grade the area and smooth it out in preparation for stabilisation, if the area has not already stabilised; and
• stabilise the area as required (e.g. lay turf, mulch, etc)

4. EROSION CONTROL

4.1. Whoa Boys

Whoa boys are used to divert the flow of water off a road or access track into a table drain or protected outlet through the use of an angled ‘speed bump’ on the track. Detailed guidance on installation and maintenance of erosion control structures can be found in Attachment 2 of ES000904R121 Soil Erosion and Sediment Control and NA000403R329 Guidelines for Access Track Inspection and Maintenance.

Recommended spacing for Whoa Boys for infrequently used tracks (guide only).

<table>
<thead>
<tr>
<th>Access Gradient (degrees)</th>
<th>Whoa Boy Spacing Moderate Erosion Hazard (metres)</th>
<th>Whoa boy Spacing High Erosion Hazard (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td><5°</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>5° – 15°</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>15° – 25°</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>>25°</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Whoa boys must be easily trafficable and drain water across the road without scouring, ponding or overtopping.

They should be ≈ 0.6m high (unconsolidated) and be battered for a minimum of 2 metres on both top and bottom sides of the mound.

4.2. Fibre Matting

Fibre matting is used to protect a disturbed surface by preventing run-off from causing erosion. There are a variety of types of matting and some that allow vegetation to grow on the batter/slope face, which when mature can provide the erosion protection required. Fibre matting should always be installed in conjunction with Catch Drains.
5. SEDIMENT CONTROL METHODS

Detailed guidance on installation and maintenance of sediment fences and other sediment control measures can be found in Attachment 3 of ES000904R121 Soil Erosion and Sediment Control and NA000403R329 Guidelines for Access Track Inspection and Maintenance.

6. STABILISATION TECHNIQUES

Designing a site to consider effective stabilisation to take account of specific climatic influences and applying the appropriate measures will provide a better solution right from the onset. Factoring in the positioning of features that influence the best management of rain and its subsequent run-off effects reduces the ongoing maintenance and susceptibility of the site to the effects of erosion and soil instability.

A range of stabilisation measures are summarised in Attachment 4 of ES000904R121 Soil Erosion and Sediment Control.

7. ACCESS GATES AND FENCES

The Contractor shall install access gates of the size and style nominated in either the Drawings or in the Main Specification, along the route specified by Ergon Energy in accordance with Reference NA000403R420: Standard Field Gate Requisitioning and Installation Guideline.

The erection of new gate assemblies shall be carried out where gate access is required through a fence line that impedes continuous or lateral access to electricity infrastructure. This work shall be performed under the guidance and approval of Supervising Officer.

The replacement of existing gates shall include the recovery and return of the existing gate components, and the installation of new gate assemblies. This replacement shall be carried out where the function of an existing gate is impaired by major damage or deterioration to the majority of the gate’s components.

Gate installation and maintenance includes cutting of the existing fence and removal of posts where necessary, the piecing, re-tensioning and retying including repair if necessary, to restore the fence to as good as or better condition as existed prior to the erection of the gate.

If a new subdivision poses the introduction of a fence across an access track, or a property owner wishes to erect an internal fence across an access track which will prevent access to a structure, this work shall be performed under the guidance and approval of Supervising Officer.

All line access gates installed in boundary fences should be locked with standard locks provided by Ergon Energy, unless adjacent property owners are satisfied that they be left unlocked. Gates installed in internal property fences will be latched or locked on request. All locks remain the property of Ergon Energy, and should only be used to give authorised personnel access through a gate. Any extra lock/s are to be located so that no party can lock any other party out.

Gates are to be left as they are found. Where it appears that a gate should be shut, relevant property owners should be contacted where possible, to ascertain the appropriate action. Under no circumstances should a gate be locked without consultation with the owner. Where required, the Contractor shall erect, replace or repair access gates. Existing gate assemblies or components that are placed shall be recovered and returned to a location nominated by the Supervising Officer.
Access Track Construction Standard and Specification

The fence wires shall be strained at least as tight as the existing fence wires and tied off permanently around the gateposts as indicated in the drawings.

The Contractor shall provide all transportation of materials, supervision, support, labour and equipment necessary for the erection, replacement or repair of gates. The Contractor shall:

1. Provide all equipment, materials and design necessary for the safe performance of the work to specified standards;
2. Provide a competent and suitably experienced operator for the relevant plant;
3. Provide competent workers to perform the works and supervision of the work;
4. Provide all maintenance and support for the equipment and the operator/s;
5. Ensure that accommodation and sustenance is available for all personnel performing work within the provisions of the WH&S Act and Regulation;
6. Accept all liability for any damage that may occur to the materials and equipment during the period of work under this contract and
7. Assume responsibility as caretaker of the equipment.

7.1. Erection of New Fences

In situations where new subdivision fences are constructed on existing powerline easements there shall be a minimum clearance of 3 metres between the fence line and any Ergon Energy poles or other assets to allow working access to the site. When locating fences parallel to High Voltage powerlines further technical advice should be sought in regard to minimisation of the potential for induction from the energised powerline.

7.2. Gate Post Removal (Contaminated Timber)

When the Contractor is required to remove wooden gate posts, the Contractor shall inspect the post to check for evidence of Termite/CCA treatment and if Termite/CCA treatment IS NOT SUSPECTED, the Contractor shall:

1. Remove and dispose of any waste and the post/s in an approved industrial waste bin or collection point for recycling in accordance with local government regulations. General waste includes:
 • Uncontaminated wooden posts
 • Concrete
 • Excavated Rocks
 • Wood Shavings and off-cuts
 • Vegetation and debris from site
 • Wire off-cuts.

2. Backfill all excavated soil, and provide approved additional backfill for the excavation where required. Approved backfill supplied by the Contractor shall be clean gravel, sand or loam suitable for compaction with a maximum particle size of 25mm. Clean fill may be collected from the site if it is gathered from a distance greater than 2 metres from any wood posts in the area, and if it is suitable for compaction.
3. As the soil is reinstated, compact the soil at 100mm vertical intervals with a suitable compaction tool around the full circumference of the pole.

4. Cover the backfill with clean material to a height, according to the following:
 - 75mm above the contaminated soil backfill if the wood post is in a normal grazing area.
 - 100mm above the contaminated soil backfill if the wood post is located near feedlots, dairies, or fenced cattle yards where cattle are contained in close proximity for extended periods.

5. Leave the site in a clean and tidy condition.

When wooden gate post/s IS SUSPECTED of contamination from Termite/CCA treatment the Contractor shall undertake the following additional steps:

1. Follow Trackable Waste requirements appropriate for relevant local government authority. Trackable waste includes:
 - Post/s
 - Chemical residue and containers

2. On chemical-free properties, in stock holding yards or in waterways the posts and waste materials should be transported in secure containment on a route that reduces the exposure of contamination to these sensitive locations.

For further information refer to ES000904W104: Implement Controls - Handling and Disposal of Redundant Poles.