Standard for Distribution Line Design Underground

These standards created and made available are for the construction of Ergon Energy infrastructure. These standards ensure meeting of Ergon Energy’s requirements. External companies should not use these standards to construct non-Ergon Energy assets.

If this standard is a printed version, to ensure compliance, reference must be made to the Ergon Energy internet site www.ergon.com.au to obtain the latest version.

<table>
<thead>
<tr>
<th>Approver</th>
<th>Jason Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group Manager Engineering Standards and Technology</td>
</tr>
</tbody>
</table>

If RPEQ sign off required insert details below.

<table>
<thead>
<tr>
<th>Ergon Energy</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Certified Person name and Position</th>
<th>Registration Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmelo Noel</td>
<td>8802</td>
</tr>
<tr>
<td>Engineering Manager Distribution Network Standards</td>
<td></td>
</tr>
</tbody>
</table>

Abstract: Design standards for underground line design

Keywords: distribution, design, design manual, underground
Standard for Distribution Line Design Underground

For definitive document version and control detail, please refer to the information stored on the Process Zone.

Revision history

<table>
<thead>
<tr>
<th>Revision date</th>
<th>Version number</th>
<th>Author</th>
<th>Description of change/revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>Carmelo Noel</td>
<td>Original Issue</td>
</tr>
</tbody>
</table>

Document approvals

<table>
<thead>
<tr>
<th>Name</th>
<th>Position title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Edmunds</td>
<td>Executive General Manager Network Optimisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jason Hall</td>
<td>Group Manager Engineering Standards and Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leigh D’Arcy</td>
<td>Group Manager Network Maintenance and Performance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stakeholders / distribution list

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Shephard</td>
<td>Regional Asset Manager South</td>
<td>Endorse</td>
</tr>
<tr>
<td>Dave Gray</td>
<td>Regional Asset Manager Central</td>
<td>Endorse</td>
</tr>
<tr>
<td>Roy Hamilton</td>
<td>Regional Asset Manager North</td>
<td>Endorse</td>
</tr>
<tr>
<td>Tony Loveday</td>
<td>Distributed System Platform Architect</td>
<td>Endorse</td>
</tr>
<tr>
<td>Adam Bletchly</td>
<td>UG & PL Standards Engineer</td>
<td>Endorse</td>
</tr>
<tr>
<td>Nev Nolan</td>
<td>Regional Asset Coordinator South</td>
<td>Comment</td>
</tr>
<tr>
<td>Greg Canavan</td>
<td>Regional Asset Coordinator Central</td>
<td>Comment</td>
</tr>
<tr>
<td>Darrin Hoffensetz</td>
<td>Regional Asset Coordinator North</td>
<td>Comment</td>
</tr>
<tr>
<td>Kevin Hunter</td>
<td>Manager Lines Design</td>
<td>Endorse</td>
</tr>
<tr>
<td>Danny Miles</td>
<td>Design Engineering Manager</td>
<td>Comment</td>
</tr>
<tr>
<td>Bert Borland</td>
<td>Distribution Design Manager</td>
<td>Comment</td>
</tr>
<tr>
<td>Ian Branch</td>
<td>Distribution Design Manager</td>
<td>Comment</td>
</tr>
<tr>
<td>Paul McCarthy</td>
<td>Design Support Manager</td>
<td>Comment</td>
</tr>
<tr>
<td>Ken Lewis</td>
<td>Engineering Manager Maintenance & Refurbishment</td>
<td>Endorse</td>
</tr>
<tr>
<td>Jeff Shears</td>
<td>Senior Engineer Line Maintenance Standards</td>
<td>Endorse</td>
</tr>
</tbody>
</table>
Table of Contents

1 Overview .. 1
1.1 Purpose .. 1
1.2 Scope ... 1
2 References .. 2
2.1 Ergon Energy controlled documents .. 2
2.2 Other documents .. 2
3 Legislation, regulations, rules, and codes ... 3
4 Definitions, acronyms, and abbreviations .. 3
4.1 Definitions .. 3
4.2 Acronyms and abbreviations .. 4
5 High Voltage Network Design .. 5
5.1 Network Planning Arrangement ... 5
5.1.1 General ... 5
5.1.2 Residential Development ... 5
5.1.3 Commercial and Industrial Development .. 6
5.1.3.1 Subdivisions .. 6
5.1.3.2 Larger Customers ... 7
5.1.4 Rural Developments ... 8
5.1.5 Padmounted Substation Determination .. 8
5.1.6 Community Powerline Projects ... 8
5.2 Padmounted Substation HV Switchgear Selection .. 9
5.2.1 General ... 9
5.2.2 Interconnected Backbone Feeders ... 9
5.2.3 Radial Feeders .. 10
5.2.3.1 General .. 10
5.2.3.2 Connecting to an Underground Backbone .. 10
5.2.3.3 Connecting to an Overhead Line .. 11
5.3 Padmounted Substation Site Selection .. 12
5.3.1 General ... 12
5.3.3.1 Common Earth Sites .. 13
5.3.3.2 Separate Earth Sites ... 13
5.4 Pole Top Selection ... 14
5.5 Cable Selection...14
 5.5.1 General ..14
 5.5.2 Standard Underground Cables ..15
 5.5.3 Cable Route Selection ...15
6 LOW VOLTAGE NETWORK DESIGN ...17
 6.1 Network Planning and Design Arrangement ...17
 6.1.1 General ...17
 6.1.2 Residential Subdivisions ..17
 6.1.2.1 Network Arrangement ...17
 6.1.2.2 ADMD ..19
 6.1.2.3 Voltage Drop Calculations ..20
 6.1.3 Commercial and Industrial Development ...20
 6.1.3.1 Network Arrangement ...20
 6.1.3.2 ADMD (Commercial / Industrial) ..24
 6.1.3.3 Voltage Drop Calculations ..24
 6.2 Cable Selection ..24
 6.2.1 General ...24
 6.2.1.1 Introduction ...24
 6.2.1.2 Mains Cable ..25
 6.2.1.3 Cross-road Cable ...25
 6.2.1.4 Service Cables ...25
 6.3 Pole Top Selection ..25
 6.4 Installation Guidelines ..26
7 ELECTRICAL DESIGN ...28
 7.1 Ferroresonance ..28
 7.1.1 Methods of controlling ferroresonance ..29
 7.2 Electromagnetic fields (EMF) ..31
 7.3 HV & LV Isolators (Links) Capacitive Charging Current Limitation32
 7.4 Metallic Pipelines in Close Proximity to High Voltage Installations33
8 CABLES ...35
 8.1 HV Cable Data – Non insect Protected ...35
 8.2 HV Cable Data – Insect Protected ...36
 8.3 LV Cable Data – Non Insect Protected ...37
 8.4 LV Cable Data – Insect Protected ...38
8.5 Cable Installation – Design Considerations .. 39
 8.5.1 Route Selection ... 39
 8.5.2 Cable Pulling .. 39
 8.5.2.1 Cable Pulling Tension Calculator ... 42
 8.5.3 Conduits .. 43
 8.5.3.1 Maximum Continuous HV Cable Runs .. 44
8.6 Cable Ratings ... 44
 8.6.1 General .. 44
 8.6.2 Soil Thermal Resistivity (ρ) .. 45
 8.6.3 Soil Temperatures .. 46
 8.6.4 Depth of Cover .. 46
 8.6.5 Mutual Heating Affects .. 46
 8.6.6 Conduit .. 47
 8.6.7 Cyclic Rating Factors .. 47
9 EARTHING ... 49
 9.1 Earthing System ... 49
 9.1.1 CMEN ... 49
 9.1.2 Separate Earthing .. 49
 9.2 CABLE SCREEN EARTHING ... 49
 9.2.1 General ... 49
 9.2.2 Zone Substations Exits ... 50
 9.2.2.1 Earthing Options .. 50
 9.2.2.2 Earthing Policy at Zone Substation Exits ... 51
 9.2.3 Earthing of Feeder and Radial Cables ... 51
 9.3 LOW VOLTAGE EARTHING .. 52
 9.3.1 General ... 52
 9.3.2 Earthing at Pillars (Design Rules) .. 52
 9.3.3 Earthing at OH LV Cable terminations ... 52
 9.3.4 Earthing of Public Lighting Columns .. 52
 9.3.5 Earthing of Bridge Lighting .. 53
 9.4 PROXIMITY TO TELECOMMUNICATIONS .. 53
 9.4.1 Telecommunications .. 53
 9.5 Approach to Earthing Design for Developer Design and Construct Works and Ergon Energy Works ... 54
Standard for Distribution Line Design Underground

10 AGREEMENTS ...55

10.1 QR DESIGN REQUIREMENTS ...55

10.1.1 Prior Approval ..55

10.1.2 General ..55

11 APPENDIX A – CABLE PULLING TENSION CALCULATOR INSTRUCTION57
1 Overview

1.1 Purpose
This standard has been compiled in order to provide support for Designers and Asset Managers in the application of Ergon Energy Corporation’s Construction Standards.

It replaces the content in the Distribution Design Manual, Blue binder underground section currently in circulation and the relevant contents of the Distribution Asset Manual. All references to distribution line design underground shall be carried in accordance with this document and this section of the Blue Binder can be disposed of accordingly.

1.2 Scope
This standard contains design information and guidelines necessary to allow use of the Underground Construction Standards structures in a manner consistent with optimum economic, reliability and safety objectives.

It is proposed that the standard will be expanded in conjunction with future issues of the Underground Construction Manual.

The provisions of this standard are in accordance with relevant Australian Standards and / or recognised electricity design practice and have RPEQ sign off. Designs carried out in accordance with this standard can be considered to comply in this regard.

Support for this design standard is available from the Distribution Network Standards staff as follows:

Overhead Craig Avenell, Jeff Guy, & Candice Horig
Underground & Public Lighting Adam Bletchly & Kim Slater
Materials Peter Beikoff
Estimating & Compatible Units Darren Sayers
Drafting Leon Burton & Tim Borg
2 References

2.1 Ergon Energy controlled documents

<table>
<thead>
<tr>
<th>Document number or location (if applicable)</th>
<th>Document name</th>
<th>Document type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES000904F100.</td>
<td>Magnetic Field Calculator - User Notes (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>ES000904W108.</td>
<td>Management of EMF Queries and Public Communications (Work Instruction)</td>
<td>Work Instruction</td>
</tr>
<tr>
<td>NA000404R100</td>
<td>Power Coordination Guidelines Agreement between Ergon Energy and Telstra (Distribution Only)</td>
<td>Guideline</td>
</tr>
</tbody>
</table>

2.2 Other documents

<table>
<thead>
<tr>
<th>Document number or location (if applicable)</th>
<th>Document name</th>
<th>Document type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 2067</td>
<td>Substations and high voltage installations exceeding 1kV a.c.</td>
<td>Standard</td>
</tr>
<tr>
<td>ESAA C(b)2</td>
<td>Guide to the Installation Cables Underground</td>
<td>Guide</td>
</tr>
<tr>
<td>AS 5488</td>
<td>Classification of Subsurface Utility Information</td>
<td>Standard</td>
</tr>
<tr>
<td>IEEE Std 525</td>
<td>Guide for the Design and Installation of Cable Systems in Substations</td>
<td>Standard</td>
</tr>
<tr>
<td>ESAA HB100</td>
<td>Coordination of power and telecommunications - Manual for the establishment of safe work practices and the minimization of operational interference between power systems and paired cable telecommunications systems</td>
<td>Handbook</td>
</tr>
<tr>
<td>AS/NZ 3853.2</td>
<td>Earth potential rise – Protection of telecommunications network</td>
<td>Standard</td>
</tr>
</tbody>
</table>
3 Legislation, regulations, rules, and codes

<table>
<thead>
<tr>
<th>Legislation, regulations, rules, and codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Safety Act 2002</td>
</tr>
<tr>
<td>Electrical Safety Regulation 2013</td>
</tr>
<tr>
<td>Work Health and Safety Act 2011</td>
</tr>
<tr>
<td>Work Health and Safety Regulation 2011</td>
</tr>
<tr>
<td>Electricity Act 1994</td>
</tr>
<tr>
<td>Electricity Regulation 2006</td>
</tr>
</tbody>
</table>

4 Definitions, acronyms, and abbreviations

4.1 Definitions
For the purposes of this standard, the following definitions apply:

<table>
<thead>
<tr>
<th><Term></th>
<th><Definition></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Fields</td>
<td>Fields, produced by voltage, which increase in strength as the voltage increases. The electric field strength is measured in units of volts per meter (V/m) or kilovolts per meter (kV/m).</td>
</tr>
<tr>
<td>Electric and Magnetic fields (EMF)</td>
<td>A term used to refer to both electric and magnetic fields. This guideline applies to extremely low frequency (under 3kHz) electric and magnetic fields around power lines, electrical apparatus and electrical wiring.</td>
</tr>
<tr>
<td>Magnetic fields</td>
<td>Fields, resulting from the flow of current through wires or electrical devices, which increase in strength as the current increases. Magnetic fields are measured in units of gauss (G) or tesla (T). Gauss is the unit most commonly used in Australia. Tesla is the internationally accepted scientific term. Since most environmental EMF exposures involve magnetic fields that are only a fraction of a tesla or a gauss, these are commonly measured in units of microtesla (µT) or milligauss (mG). To convert a measurement from microtesla (µT) to milligauss (mG), multiply by 10. That is, 1 µT = 10 mG.</td>
</tr>
<tr>
<td>Sensitive Areas</td>
<td>Areas or potential areas where children congregate such as schools, child-care and kindergarten centres and playgrounds.</td>
</tr>
<tr>
<td>Time Weighted Average (TWA)</td>
<td>A weighted average of exposure measurements taken over a period of time that takes into account the time interval between measurements. When the measurements are taken with a monitor at a fixed sampling rate, the time-weighted average equals the arithmetic mean of the measurements.</td>
</tr>
</tbody>
</table>
4.2 Acronyms and abbreviations

The following abbreviations and acronyms appear in this standard.

<table>
<thead>
<tr>
<th><Term, abbreviation or acronym></th>
<th><Definition></th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Air Break Switch</td>
</tr>
<tr>
<td>ADMD</td>
<td>After Diversity Maximum Demand</td>
</tr>
<tr>
<td>CARE</td>
<td>Cyclone Area Reliability Enhancement</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>CFS</td>
<td>Combined Fuse Switch</td>
</tr>
<tr>
<td>CMEN</td>
<td>Common Multiple Earth Neutral</td>
</tr>
<tr>
<td>CPP</td>
<td>Community Powerline Project</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromagnetic Fields</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
</tr>
<tr>
<td>ICNIRP</td>
<td>The International Commission on Non-Ionising Radiation Protection EMF Exposure Reference Limits 2010 [4].</td>
</tr>
<tr>
<td>LV</td>
<td>Low Voltage</td>
</tr>
<tr>
<td>NPO</td>
<td>Network Planning Officer</td>
</tr>
<tr>
<td>POS</td>
<td>Point of Supply</td>
</tr>
<tr>
<td>RAC</td>
<td>Regional Asset Coordinator</td>
</tr>
<tr>
<td>RMU</td>
<td>Ring Main Unit (also previously known as GMS or ground mounted switchgear)</td>
</tr>
<tr>
<td>SDO</td>
<td>Senior Design Officer</td>
</tr>
<tr>
<td>STR</td>
<td>Soil Thermal Resistivity</td>
</tr>
<tr>
<td>UDC</td>
<td>Underground Distribution Construction</td>
</tr>
<tr>
<td>URD</td>
<td>Underground Distribution Development</td>
</tr>
</tbody>
</table>
5 High Voltage Network Design

5.1 Network Planning Arrangement

5.1.1 General

The design of any underground work must be integrated into an overall vision for development of the network. Planning provisions cater for the orderly and cost effective growth and development of the network and its safe and reliable operation through:

- prudent investment in network assets
- the avoidance of costly augmentation and
- replacement of assets to meet demand growth.

The following provides some guidance in making design decisions and this, together with consultation and the support of RAM, Network Planning and Network Performance will enable the achievement of this objective.

5.1.2 Residential Development

Residential developments can range from small isolated developments through to the extensive developments covering large tracts of land.

The network should be designed to achieve the minimum number of padmounted substations necessary to meet the calculated design demand and voltage regulation requirements. For conventional subdivisions a 500 kVA transformer is the largest padmount capacity that can practically be distributed, but in most cases a 315 kVA transformer capacity will be sufficient (refer to Section 6 - LV Network Design).

As a design rule the transformer capacity should be chosen to achieve:

- 90% utilisation, as a minimum and
- 125% utilisation, as a maximum

The above utilisation figures shall be based on the estimated demand at the time of commissioning, given the limitations imposed by the range of transformer sizes available.

Radial feeders are allowed under the following circumstances:

- Where the final connected capacity will not exceed 1.2MVA
- Provision of additional conduits to allow for loop-in / loop-out arrangement if the connected capacity is likely to exceed 1.2MVA.
- Developers will be required to fund the loop-in / loop-out arrangement when the connected capacity exceeds 1.2MVA – see Figure 5.1.2-1
Where the design capacity requirement of a development or the combined design capacity with adjoining developments exceeds 1.2 MVA, and the Developer is building successive stages, the Developer can exceed the 1.2 MVA if all of the following conditions are met:

- A detailed staged development master plan must be provided and agreed with Ergon Energy.
- The connected transformer capacity of the radial must not exceed 2MVA.
- The developer is to provide a Bank Guarantee to Ergon Energy for the agreed sum that it would cost Ergon Energy to construct a connection to remedy the radial arrangement.
- The developer has 3 years to progress the development and complete the connection so that the radial connected capacity no longer exceeds 1.2MVA.

![Diagram of Radial connection](image)

Figure 5.1.2-1 Radial connection

Information will often be sketchy and incomplete and the strategy plan may need to cater for a number of contingencies, but nevertheless the plan will enable an orderly development of the network. Designers must also consult with the RAM and the SDO to establish whether the development they are designing is part of an established network development strategy plan.

Guidelines for the selection of switchgear and cable sizes for these network arrangements are provided in Sections 5.2 and 5.5.

5.1.3 Commercial and Industrial Development

5.1.3.1 Subdivisions

In general the same principles apply as underground Residential Development (in addition to no tee-offs as shown in Figure 5.1.3-1) because the substation supplies distributed customers. But for
this customer class the electrical requirements of allotments are generally unknown and less predictable.

A figure of 100 VA per m² may be applied to known office space for lighting and air-conditioning load, but otherwise, the estimated demands will generally need to be based on the knowledge of similar developments.

A demand allocation can be assigned by allotment size and a substation/s sited to meet the resulting demand. Subsequent supply requests exceeding allocations may require the establishment of another substation and the assigned allocations will need to be incorporated into supply agreements for the subdivision.

Padmounted substation transformer capacities up to 1500kVA for 11kV and 1000kVA for 22kV are available for commercial and industrial applications. It is important however, not to rely too heavily on large transformers and LV distribution for supply to distributed customers. There is a risk of over investment in LV distribution to cater for the volatile and unpredictable demands associated with this customer class. Consequently it is generally better to minimise the number of LV circuits by establishing another substation site, or future site, as this will provide greater flexibility for meeting demand variables.

![Diagram]

Figure 5.1.3-1 Commercial and Industrial applications

5.1.3.2 Larger Customers

Electrical requirements may be established from existing operations, or, in the case of a new plant, from knowledge of the equipment to be installed with a working diversity applied.

For larger customers the substation should be situated as close as practical to the customers load centre, regardless of whether this makes the provision of an external low voltage interconnection impractical. This cannot however be hard and fast rule because of the different situations that will be encountered, and good engineering practice will need to be applied.

Padmounts are preferred for supply requirements up to 1500kVA for 11kV and 1000kVA for 22kV, provided a site satisfactory to Ergon Energy and the customer can be established. Multiple padmounts may be used under certain conditions in consultation with Distribution Network Standards. Otherwise an indoor/chamber type substation will be required.
When assessing the customer’s supply requirements, future growth must be taken into account as, it may be necessary to establish an indoor/chamber substation initially to cater for the longer term needs.

Some industrial customers may, because of the nature of their business, seek to have an alternative HV supply. In such cases commercial considerations will apply. As a design rule Ergon will not normally provide a second supply cable and the associated switchgear in these situations.

Designers must consult with the Regional Asset Coordinator (RAC) before a “ring feed” is considered for network purposes in these circumstances.

5.1.4 Rural Developments

For rural developments the likely demand will not generally warrant an interconnected HV network, unless this is required for other reasons. The selection of the substation transformer size must be a practical balance between the cost of padmounts, HV cables, LV cables and reliability considerations.

As the number of connected customers falls, there will be less diversity of demand and a greater impact from unbalanced supply factors, making the extensive use of LV networks uneconomic. The best solution will depend on allotment size and it should be expected that transformer size and the extent of LV networks will decrease with an increase in allotment size.

Designers must consult a SDO to determine the most appropriate underground arrangement for the allotment sizes involved and local demand factors.

An arrangement using overhead high voltage (HV) pole substations and underground property services will be more cost effective for large allotments.

5.1.5 Padmounted Substation Determination

Where the agreed maximum demand will exceed 100kVA, Ergon Energy has a Legislated right to require a padmount substation site on the property.

A connection with no padmount may be approved as long as allowance is made for a future padmount to be installed to cater for future load growth.

If there is to be, a padmount substation established and the RAM approves the connection with no padmount substation, then an easement may be required, dependent upon the existing Network performance and possible future growth in load requirements by the customer concerned.

RAM will determine in consultation with the DPO what feeder connection is made to the substation where more than one feeder is available.

Proposed sites that are for redevelopment where Ergon Energy already has a substation must retain provision for at least equivalent substation capacity within the redeveloped site. Any proposal to relinquish the padmount site or reduce the substation capacity will require RAM approval.

5.1.6 Community Powerline Projects

The Community Powerline Projects (CPP) scheme is a long-term scheme initiated by Ergon Energy to reduce the impact of powerlines on streetscapes and the environment. Eligible projects will be considered for financial assistance towards relocation, undergrounding or replacement of existing powerlines, the emphasizes being in areas of environmental, historic or scenic significance, or high pedestrian use. Projects must benefit the local, if not the wider, community and generally require local government support.
5.2 Padmounted Substation HV Switchgear Selection

5.2.1 General

The selection of switchgear for the electrical design of any project must be based on the planning and reliability considerations discussed earlier, any specific operational functionality required and physical conditions affecting the placement of the equipment.

Padmounts are purchased as modular units fitted out with either a:

For 11kV –
- LV board comprised of a single switch fuse (suitable only for a 100kVA transformer), or,
- LV board comprised of an isolating switch and 3 fuse switches, plus provision for a spare (the capacity of the isolating switch is dependent on transformer size required). 750kVA and 1000kVA are also provided with right angle adaptor brackets for the option of direct mounting of up to 3x300mm2 cables per phase to the busbar system.
- Circuit breakers are also available and is required for single loads of starting from 800A

For 22kV –
- 500kVA LV board comprising of an isolating switch and 4 fuse switches, plus provision for a spare;
- 1000kVA LV board comprise of a transformer isolating switch and 2 fuse switches, plus provision for a spare, together with a customer’s mains isolating switch and connection point.
- Circuit breakers are also available and is required for single loads of starting from 800A

The type of HV switchgear, if any, is purchased to fit the application. The Underground Construction Manual, PADMOUNTED SUBSTATIONS drawing No's 5094, 5095 & 5096 for 11kV and No's 5104 & 5082 for 22kV set out the available combinations.

5.2.2 Interconnected Backbone Feeders

Interconnected underground systems used by Ergon Energy are normally a “ring main” arrangement with incoming and outgoing feeder cables being connected to load break / fault make switching at padmounts. The transformer is connected to the bus linking the feeder switches by a switch fuse combination as generally shown in Figure 5.2.2-1.

![Figure 5.2.2-1 Interconnected backbone feeders](image)
Pole top arrangements for the connection of the underground network to the overhead system are set out in Section 5.4.

As an underground network grows there will be a need to establish interfeeder ties along the backbone. As a **design rule**, a tie should be considered for every 2MVA design demand along a feeder for 11kV and 3-4 MVA for 22kV. Switchgear is available for padmounts with 3 feeder switches as shown in Figure 5.2.2-2 (refer Underground Construction, Manual PADMOUNTED SUBSTATIONS drawing No's 5096/3 for 11kV and 5082/2 & /3 for 22kV) to enable this.

![Interfeeder tie for 22kV or 11kV](image)

Figure 5.2.2-2 Interfeeder tie for 22kV or 11kV

5.2.3 Radial Feeders

5.2.3.1 General

Radial supplies will generally supply only one or two padmounts and with this arrangement there is no alternative high voltage supply in the event of damage to the cable or a failure. The time to fix a high voltage cable fault can run into days and therefore the choice of a radial connection must take account of the consequential affect this will have on the customer and the community (i.e. essential services).

In some circumstances it may be possible to provide a limited alternative supply from low voltage interconnections but this will generally be inadequate for the time required to repair a cable fault.

While every case must be assessed individually, the general **design rule** is that demands < 1.2 MVA are acceptable for a radial connection subject to the availability of portable generation.

Many commercial and industrial customers will desire an alternative high voltage supply. Where the design rule requirements for a radial supply apply and no other, planning, operational or reliability requirements affect this, commercial conditions may apply to the provision of the second cable.

Designers should seek further advice if in doubt from the RAC.

A RMU shall be used for all loop-in / loop-out on radial feeders.

5.2.3.2 Connecting to an Underground Backbone
For 22kV systems a ring main switch with an additional switch fuse unit is available. This enables a radial supply to be taken off an underground backbone to a padmount with a direct connection to the transformer (refer Underground Construction Manual, PADMOUNTED SUBSTATIONS drawing No’s 5082/2 & /4). Because the cable is fused at the supply end, 35mm² cable with limited screen fault rating can be used.

![Figure 5.2.3-1 Backbone connection for 22kV only](image)

For 11kV systems this is not available, however radial feeds are possible by using the interfeeder unit (refer Underground Construction Manual PADMOUNTED SUBSTATIONS drawing No’s 5096/3) and a feeder rated cable (refer Section 5.5). A switch fuse arrangement will be required at the radial padmount to protect the transformer (refer Underground Construction Manual PADMOUNTED SUBSTATIONS drawing No’s 5096/1 & /2).

![Figure 5.2.3-2 Backbone connection for 11kV / 22kV](image)

This option should be used for 11kV application or 22kV application where a feeder rated cable for possible future use is a requirement.

5.2.3.3 Connecting to an Overhead Line

The choice of padmount/s for a radial connection to an overhead system should be the lowest cost arrangement available.

Generally, radial cables will need to be protected by a switch fuse combination at the pole top connection to protect the cable and transformer and avoid the risk of ferroresonance (see Section 7.1). For a single padmount arrangement Underground Construction Manual, PADMOUNTED SUBSTATIONS drawing No’s 5094 for 11kV and 5104 for 22kV will apply.
For 2 substations on a radial supply the first will need to incorporate a ring main unit (RMU).

Feeder cables may also be used for radial connections. This may be done to utilise accumulated short cable lengths from other projects or to allow future conversion to a feeder cable.

In situations where there is a significant possibility of the LV load being disconnected for extended periods, padmount selection may require a switch fuse arrangement for transformer protection. This is to prevent ferroresonance overvoltages occurring following a single phase fuse operation at the cable source end. Feeder rated cable should be used for these applications.

For 11kV systems a single switch fuse unit is available for a single padmount arrangement and may be used in conjunction with ring main units for a multiple padmount arrangement (refer Underground Construction Manual, PADMOUNTED SUBSTATIONS drawing No’s 5096/1 & /2).

Pole top arrangements for the connection of the underground network to the overhead system are set out in Section 5.4.

5.3 Padmounted Substation Site Selection

5.3.1 General

The selection of the site for a padmounted substation should be as close as practical to the optimum position for electricity supply distribution. The site must also:

- be sensitive to the local environment
- be secure from third party and environmental damage
- be relatively flat and structurally sound
- not be subject to tidal inundation, storm surge or flooding (1:100 year risk)
- provide secure and safe access for operational purposes
- consideration for road safety and
- not be an obstruction or public nuisance.
It may not be possible to fully meet all these criteria and the local government authority may have preferences for these sites, which need to be taken into account.

Site selection must also take into account the following:

- Effect of Electro Magnetic Fields (EMF) (see Section 7.2), in particular, on surrounding dwellings. The effective means of reducing EMF levels at surrounding buildings is to limit the transformer kVA rating and also provide reasonable separation between its LV bushing and the buildings.

- For the padmount locations as detailed in the Underground Construction Manual PADMOUNTED SUBSTATIONS drawings to apply, the LV cabinet must face the street and the maximum transformer rating for 11kV should not exceed 500kVA.

- Other clearances are covered in the Underground Construction Manual EARTHING folder, drawing 5250 for clearances to earthing systems, communication plant and fire hydrants.

- General compliance with the requirements in AS2067 Substations and high voltage installations exceeding 1kV a.c.

- The site shall border a property boundary, which provides access from the road reserve. Proposal to locate a padmounted substation in other locations within a lot shall require approval from the RAM

5.3.3.1 Common Earth Sites

For 11kV –

- Refer Underground Construction Manual PADMOUNTED SUBSTATIONS drawing No’s 5000/1 to /4, 5010, 5174 and accompanying drawings.

For 22kV –

- Refer Underground Construction Manual PADMOUNTED SUBSTATIONS drawing No’s 5114/1 to /4, 5116/1 to /2, 5176 and accompanying drawings.

5.3.3.2 Separate Earth Sites

For URD installations a CMEN system is generally required. A separate earth arrangement is considered not practical due to the necessity of a considerably larger site, needed to provide clearance between the padmount site (HV) earth system and nearby conductive structures. Note also the required separation of the padmount site (HV) earth system from communications assets and fire hydrants.

Site requirement needs to be identified in the initial stages of design & negotiation with the Developer as an increase in size is almost certainly not practical at the time of construction. An exception to the foregoing may be where a padmount is located in parkland & the separation, site size, & other requirements are met.

For 11kV –

- Refer Underground Construction Manual PADMOUNTED SUBSTATIONS drawing No 5000/1 to /4 & 5175.

For 22kV –
5.4 Pole Top Selection

The Underground Construction Manual HV CONSTRUCTION drawing No’s 5101, 5076 & 5248 detail the standard arrangements for 11kV, 22kV and 33kV pole top assemblies respectively for cable connections to the overhead network.

Pole top construction options provided and their applications are as follows:

Manual Gas Switch, Air Break Switch (ABS) and Expulsion Drop Out fuses (EDOs)
- Basic arrangement used for Single padmounts with no HV switchgear.
- The cable would generally be 35mm² but could be feeder rated cable used to use up odd lengths.

Links only
- used for single padmounts with HV switch fuse or RMU (in situations where LV load may be disconnected for significant periods and which would present a ferroresonance risk following failure of a pole mounted EDO fuse)
- used for supply to a section with multiple padmounts with an RMU at the first transformer
- used for transitions from OH to UG cable. **Feeder rated cable would always be used with this option.** These links are provided primarily as an isolation point to assist with fault location.

The SGNW0006 Switching Equipment Application Strategy document provides further clarification to the application of switches. Any deviation from the standard pole top arrangement must be in consultation with Distribution Network Standards.

5.5 Cable Selection

5.5.1 General

Cables used in the network can be generally categorised as one of the following:

Substation Exit –
1. Cable from the feeder CB to the first operating device in the distribution network and is protected by the feeder CB.
2. Designed to carry the full feeder load and half the adjacent feeder load under contingency (4 / 6 MVA at 11kV and 8 / 12 MVA at 22kV) when laid in the proximity of up to 6 other stations exit cables.

Note – For rural zone substations and other low demand applications, feeder rated cables may be used as station exits. Network Development should be consulted.

Feeder Cable –
1. Forms part of the interconnected network, backbone supply and is protected by the feeder CB.
2. Designed to carry full feeder load and half the load of an adjacent feeder under contingency (4 / 6 MVA at 11kV and 8 /12 MVA at 22kV) without any de-rating from the mutual heating of adjacent cables.

Fuse Protected Radial –
1. Must be fuse protected to ensure that the cable insulation is not raised to temperatures that will cause permanent damage under short circuit conditions.
2. Designed to carry the load nominated from the mutual heating affects of any adjacent cables.

Non-Fuse Protected Radial –
- Protected only by the feeder CB and requires the same short circuit performance characteristics as a feeder cable.

5.5.2 Standard Underground Cables

The standard Ergon range of cables is set out in Section 8 Cables, together with their electrical characteristics and ratings. Other cables should not be used in the Ergon Energy network without the agreement of Distribution Network Standards.

Note: Ergon Energy has adopted a rationalised range of 11kV, 22kV and 33kV cables and in some instances insect protected cables are the only option for use in areas where insect protection is not required. Refer to the table 5.5.3.

5.5.3 Cable Route Selection

Cable routes are required to be in the road reserve. If any distribution asset including spare conduits needs to cut through any property to supply another part of the subdivision or a connection to the distribution network, a 3m width pathway surveyed and registered as road reserve is required.

Any departures to this requirement must first be discussed with the RAM.
11kV

<table>
<thead>
<tr>
<th>Application</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Exit Cable</td>
<td>#Triplex 400mm² Al XLPE</td>
</tr>
<tr>
<td></td>
<td>Triplex 185mm² Al XLPE</td>
</tr>
<tr>
<td>Feeder Cable / Non Fuse protected Radial</td>
<td>Triplex 185mm² Al XLPE</td>
</tr>
<tr>
<td>Fuse protected Radial</td>
<td>Triplex 35mm² Al XLPE</td>
</tr>
</tbody>
</table>

Note: Insect Protected cable to be used.

22kV

<table>
<thead>
<tr>
<th>Application</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Exit Cable</td>
<td>1C 630mm² Al XLPE</td>
</tr>
<tr>
<td>Feeder Cable / Non Fuse protected Radial</td>
<td>Triplex 185mm² Al XLPE</td>
</tr>
</tbody>
</table>

33kV

<table>
<thead>
<tr>
<th>Application</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder Cable / Non Fuse and Fuse protected Radial / Station Exit Cable</td>
<td>1C 300mm² Al XLPE</td>
</tr>
<tr>
<td>Feeder Cable / Non Fuse and Fuse protected Radial</td>
<td>1C 50mm² Al XLPE</td>
</tr>
</tbody>
</table>
6 LOW VOLTAGE NETWORK DESIGN

6.1 Network Planning and Design Arrangement

6.1.1 General

The LV network is the end delivery vehicle of electricity supply to customers and the way it is designed determines the make-up of the remainder of the network that supplies it.

The LV network design is constrained by:

- Regulated voltage limits that must be maintained at the customers terminals.
- Ergon Energy’s range of standard conductor sizes.

Substations must be situated (refer Section 5.3) to enable the distribution of the LV supply to customers by the standard cable sizes within statutory voltage limits.

Great care must be taken in design as the cost to augment underground networks is much greater than that of an overhead network and any future works will be disruptive to our customers. Accordingly, due consideration must be given to future network expansion and provision for demand growth.

Where there is uncertainty regarding future expansion and/or volatility in demand, reliance on extensive LV networks should be avoided and provision made to grow the HV network to cover expansion and demand growth risks.

Most voltage calculations will be associated with distributed customers and this requires consideration of demand, diversity and unbalance. These vary with customer class and are dealt with separately below by the category of customer.

6.1.2 Residential Subdivisions

6.1.2.1 Network Arrangement

The LV network is a loop pillar arrangement as generally shown in the Figure 6.1.2-1 below.

A single size, mains cable (3φ - 240mm² Al) is looped from supply pillar to supply pillar to form a circuit. Tee connections to other roadways are also made in the distribution pillars.

The pillars (supply & cross-road) are situated at every other adjacent property boundary on both roadsides with a 3φ 16mm² Cu cable connecting the supply pillars on the main’s cable roadside to the cross road pillars on the remote roadside.

The customer’s main is connected through a fuse in the pillars on both roadsides.

Street lighting columns are supplied from the nearest pillar, via a fuse protected cable.

Circuits of adjacent substations are connected in linking pillars that incorporate a “combined fuse switch unit” (CFS).

Details of pillar construction and connections are shown in the Underground Construction Manual, LV CONSTRUCTION drawings.
Detail of the cables are shown in the Underground Construction Manual MATERIAL DATA drawing No’s 5108 and 5110.

It must be noted that the use of linking pillars does not mean that transfer capacity is provided. This facility is only for low capacity, alternative supply, in periods of light load for maintenance activities.

The following design rules apply:

- The maximum number of customers must be connected to a circuit that voltage limits will allow
- Circuits must be radial
- One link via a switch per circuit should be provided to a circuit emanating from another transformer (where interconnection is only possible to a circuit of the same transformer, then this is acceptable)
- All services in a linking pillar must be connected to the same supply side of the pillar
- Lighting columns connected to linking pillars must be connected to the supply side on which the column is physically located
- Service connections must be balanced over the three phases, continuously along a circuit.
• Use of the 4th LV Combined Fuse Switch is allowed where a padmount substation is designed with an ultimate utilisation greater than 90%.
• Leap frogging from pillar to pillar is not acceptable.

The use of parallel LV express feeder is allowed with the following condition:

1. Paralleling of LV cables is only permitted on the first segment from the padmounted substation between the LV CFS and the first connection point on that circuit. Both cables must terminate on the same CFS in the padmounted substation and in the first connection point.
2. The first connection point of any parallel feeder shall be a CFS. This CFS can either be in the form of a distribution cabinet or a link pillar.
 a. Where a parallel feeder terminates into a Distribution cabinet it shall terminate on the LV isolator.
 b. Where a parallel feeder terminates in a Link Pillar the CFS unit shall be fitted with a maximum fuse size of 160A.
3. One (1) parallel LV express feeder per padmounted substation is acceptable. Where additional parallel LV express feeder is proposed, this must be referred to RAM for consideration.
4. Provision of LV schematics in laminated A3 sheets shall be placed on all padmounted substation whether a parallel LV express feeder exists or not.
5. Cable runs greater than 250m must be referred to RAM for consideration and cable pulling calculations shall be provided with the design.
6. LV cable joints are not acceptable on parallel LV express feeder cable runs.
7. Conduits for the parallel LV express feeder shall be installed together (side by side) along their full length.
8. Leap frogging from pillar to pillar is not acceptable.

Information Notes
Historically tapered main’s sizes have been used, but the cost associated with, bringing 2 cable drums to site and the inventory expense of an additional cable and accessories, outweigh the marginal cost benefit achieved in purchasing the smaller conductor size.

The loop pillar arrangement is favoured by most utilities in Australia. It maximises flexibility during construction and minimises delays in locating and isolating faults. It is however, subject to pillar damage particularly during the building development stage. Some States employ a buried tee arrangement that has advantages where the works are undertaken by the land developer and it is less prone to damage in the development phase. However, it causes considerable coordination difficulties with the developer, where the utility undertakes the cable laying and jointing. This arrangement will also require the consent of the Electricity Safety Regulator in Queensland, as it does not currently conform with regulations if used in the same manner as other states.

6.1.2.2 ADMD

To design a low voltage circuit supplying distributed customers it is necessary to know the demand load of the customers to be supplied. This is required to determine padmount substation requirements and carry out voltage drop calculations.

An After Diversity Maximum Demand (ADMD) can be determined and applied to all customers on a circuit. The figure is derived from an accumulated knowledge of circuit demands and the number of customers connected. The confidence in this approach increases with the number of customers connected to a circuit.
The ADMD adopted will not be the same throughout all of Ergon Energy because of climate differences, the availability of alternative energies and the socio-economic factors.

The following design rules are provided for conventional housing development, in regional centres, where reticulated gas is available. They have been determined from historical data, plus a provision for future demand growth.

- South West, Wide Bay and Capricornia (SW, WB & CA) – ADMD = 4 kVA per Lot
- North, Far North and Mackay (NQ, FN & MK) – ADMD = 5 kVA per Lot

Local knowledge will need to be applied where the base assumptions listed above are not met and variations to the nominated figures would be expected to be upward.

6.1.2.3 Voltage Drop Calculations

The permissible voltage range at the customer’s terminal (located at Ergon Energy pillars on adjacent property boundaries) is:

- 415/240 Volts ± 6%, or;
- 256 to 226 Volts φ-N

The nominal voltage level will be changed at some future date to conform with Australian standards. For this reason voltage drops are considered for calculation purposes as a % change from nominal and ADMD’s have been selected to accommodate associated demand changes.

Design rules:

- The volt drop on the mains cable must not exceed 5% (to the last distribution pillar)
- The volt drop on the distribution cable (from the distribution pillar to the customer’s terminals in the cross-road pillar) is to be taken as 1%.

Voltage Drop calculations should be performed using the software program “LV Drop”. The following inputs are design rules that will apply.

- Transformer Type – Low Impedance
- Unbalance Factor 1.8
- Cable Confidence Factor 2.0
- Volt Drop Confidence Factor 2.0
- TXF Confidence Factor 1.65
- Standard Deviation = ADMD

6.1.3 Commercial and Industrial Development

6.1.3.1 Network Arrangement

The range of circumstances encountered in new developments and renewal sites will be much more diverse than in residential areas. Demand and future growth will be unpredictable and other constraints will be imposed in the placement of substations. As a consequence, designers must be flexible in seeking solutions and aware of the limitations of LV networks to cope with the unpredictable nature of this type of development.
New Developments
The basic network arrangement used in new Commercial / Industrial developments are the same Loop Pillar system as those for URD/UDC except that supply pillars are used on both roadsides. The maximum 3φ supply to a customer from a supply pillar is 80 amps, this being limited by the fuse capacity in the pillar.

The cross road cable rating must be matched to the anticipated demand (see below Section 6.2 Cable Selection).

For most applications the 80 amp limitation has been found to be sufficient, remembering that only 4 customers can be connected to a circuit at that rate of supply, subject to voltage drop requirements being meet (see Figure 6.1.3-1 below).

Figure 6.1.3-1 Typical arrangement Commercial / Industrial Subdivision
The cross road cable rating must be matched to the anticipated demand (see below Section 6.2 Cable Selection).
Where the anticipated maximum demand of a commercial and industrial customer will exceed the fuse rating of a supply pillar a pillar type “A” should be used. The customers main is connected to the load side of the CFS and where the mains cable is looped in the pillar these are connected back to back up on the supply side terminal.

The CFS unit has a capacity of 160A but as a design rule - if the customers anticipated maximum exceeds 100kVA (140 amps) they will be supplied by either:

- a substation situated on the customers property, or,
- dedicated circuits to the customers terminals from the substation (see below Supply to Individual Customers).

The foregoing is based on the presumption of knowledge of the prospective customer’s maximum demand. Reality is that this will generally be unknown (see below Section 6.1.3.2 ADMD Commercial and Industrial). It is possible that pillars and cross road cables will need to be augmented. Where the agreed maximum demand will exceed 100 kVA, Ergon Energy has a Legislated right to require a padmount substation site on the property and this right should be exercised wherever provision of that supply weakens Ergon Energy’s ability to meet future demand growth of other customers.

In general, the right to install a padmount may be exercised, however, in the range of 100A to 200A the decision pillar or padmount would be based on the likely future demand on the site and near proximity.

Spare conduits will be laid (design rule) to cover future contingencies for HV and LV network augmentation and including cross road conduits. Refer to RAM and SDO for conduit numbers and sizing

Renewal Projects

The redevelopment of existing commercial areas generally results in changes in purpose and/or amenity and consequently electrical demand. This can pose a number of challenges as it is generally difficult to site substations at desired locations or to establish new sites. This requires optimal utilisation of available sites.

Distribution Cabinets (see figure below) enable distribution points to be established at locations remote from the substation sites (see Figure 6.1.3-2 below). The cabinets can facilitate up to 5 – 630 amp fuse strips for distribution circuits with isolators controlling the incoming main (refer Underground Construction Manual LV CONSTRUCTION drawing No 5136).

The mains cable feeding the distribution cabinet will need to be sized to meet demand and voltage requirements. Standard arrangements would be either a 1 x 240mm² or 2 x 240mm² mains. Any other arrangements would require the agreement of the SDO and the RAC.
Supply to Individual Customers.
The low impedance of underground cables makes them ideal for providing relatively large parcels of supply from existing assets either overhead or underground. This can enable the use of unutilised substation capacity via a dedicated circuit.

In these circumstances the supply cable should be taken directly to the customers terminals. The customer must provide the facility (switchboard / cabinet / pillar or the like) to accommodate this which must be located within 5 metres of the property boundary (Design Rule). Supply can be extended up to 10m onto the property as good engineering practice (eg the main switchboard is in close proximity) and with the agreement of a SDO.

It is not Ergon Energy’s responsibility to extend the supply to the customers load centre in these circumstances. This should correctly be part of the customer’s installation and be subject to the requirements of the wiring rules.
6.1.3.2 ADMD (Commercial / Industrial)

30kVA/0SD per lot has been determined for LV Drop calculations for Commercial & Industrial subdivision designs.

Of note however is that demand in these developments is more unpredictable than for residential developments. Local knowledge should provide a guide for likely demand based on similar developments if the above requirement is not suitable. For design purposes a demand may be allocated to each property. This may be on the basis of allotment size where this has been demonstrated as an appropriate measure from previous developments. Designers use the agreed demands as provided by the RAM and these must be included into supply agreements as “agreed rates of supply”.

6.1.3.3 Voltage Drop Calculations

The permissible voltage range at the customer’s terminal (located at Ergon Energy pillars on adjacent property boundaries) is:

- 415/240 Volts ± 6%, or;

The following design rules apply:

- The volts at the transformer terminals are to be taken as 240 volts.
- The volt drop on the mains cable must not exceed 5%
- The volt drop on the service cable (from the main to the customers terminals) is to be taken as 1%

Voltage Drop calculations should be performed using the software program “LV Drop”. The following inputs are provided as a guide to these factors.

- Unbalance Factor 1.8
- Cable Confidence Factor 2.0
- Volt Drop Confidence Factor 2.0
- TXF Confidence Factor 2.0
- Standard Deviation = ADMD

Due to the uncertainties associated with this customer class some fine-tuning may be required to account for local knowledge. Designers should seek the advice of a SDO in this regard, who in turn should escalate the matter through established protocols where further advice is required.

6.2 Cable Selection

6.2.1 General

6.2.1.1 Introduction

Cables used in the LV Underground network can be categorised as:

- Mains cable
- Cross-road cable
- Service cable
6.2.1.2 Mains Cable

Mains cables form the backbone of the LV circuits looping between supply pillars, distribution cabinets and substations. A single mains cable size is used (design rule) - 240mm² Al, 4/C stranded sector cable, XLPE insulated PVC or NJ-PVC* sheathed.

The demand requirement from distribution Pillars may require 2 x 240mm² Al, 4/C stranded sector cable, XLPE insulated PVC or NJ-PVC* sheathed (see CABLES section 2, Cable Ratings).

*Termite areas

6.2.1.3 Cross-road Cable

Cross-road cable connects between the mains cable in the supply pillar to the cross road pillar on the remote road side. The size of the cross road cable will depend on the application, as follows (design rules):

URD - 16mm² Cu, 4/C stranded circular cable, XLPE insulated PVC / NJ-PVC* sheathed

Commercial / Industrial

Supply up to 75kVA - 16mm² Cu, 4/C stranded circular cable, XLPE insulated PVC / NJ-PVC* sheathed.

Supply over 75kVA - 240mm² Al, 4/C stranded sector cable, XLPE insulated PVC or NJ-PVC* sheathed.

*Termite areas

6.2.1.4 Service Cables

Underground service cables connect the distribution network assets to the customer’s terminals (generally at the POS). This could be from overhead or underground network assets.

In the loop pillar system this generally occurs in the pillars and there is no service cable.

The rating of the service cable must be matched to the customer’s maximum demand (see CABLES section 8.6, Cable Rating).

6.3 Pole Top Selection

In some situations underground LV cables will need to connect to the overhead network as a source of supply or for linking purposes. Connections may also be made for earthing purposes (See EARTHING Section 9.1).

The Underground Construction Manual LV CONSTRUCTION drawing No 5056 details the standard arrangements for LV pole top assemblies including cable connections to the overhead network.

Any deviation from the standard pole top arrangement must be in consultation with Distribution Network Standards.
6.4 Installation Guidelines

LV underground cables are generally installed in lengths between pillars and cabinets and consequently lengths are relatively short. Nevertheless the same principles as those set out for HV cables in Section 8.5 Cable Installation – Design Considerations, apply.

The Underground Construction Manual, MATERIAL DATA drawing No’s 5108 & 5110 detail the physical properties and installation limitations of the standard LV cable range.

Historically, various trenching arrangements and alignments have been agreed to by Ergon Energy’s predecessors with local government authorities and other utilities. While a long term goal is to standardise arrangements, current policy is to continue with the standing regional practices.

The Underground Construction Manual, TRENCHING folder, sets out each of the regional trench arrangements, including, cross road arrangements, alignments and pillar base installation.

The Underground Construction Manual, TRENCHING folder, also covers the entry arrangements for padmounted substations, distribution cabinets and pole termination (trench and conduit) arrangements.

LV cables are normally protected by fuses which are located at:

- The LV board of padmount substations (for isolation of faults on the mains cable)
- The LV board in Distribution Cabinets (for isolation of faults on the mains cable)
- Pole terminations (for isolation of faults on the mains or service cables)
- Pillars (protecting the upstream LV network from faults on the customers installation)
- Pillars protecting public lighting cables

Cross-road cables are not normally fused.

The table below sets out the recommended fuse size for the cable applications.
### Application	Fuse Rating
URD |
Substation Circuit | 250A
Pillar | 63 A

Commercial / Industrial

<table>
<thead>
<tr>
<th>Application</th>
<th>Fuse Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation Circuit</td>
<td>315</td>
</tr>
<tr>
<td>Customer Circuit</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Distribution Cabinet Circuit</td>
<td>160A</td>
</tr>
<tr>
<td>Pillar (Supply)</td>
<td>80A</td>
</tr>
<tr>
<td>Pillar (C&I) CFS Unit</td>
<td>160A</td>
</tr>
<tr>
<td>Pillar (C&I)</td>
<td>80A</td>
</tr>
</tbody>
</table>

Service Cable: (Note 1)

Table 6.4-1 Cable fuse sizing

Where the circuit supplies a Distribution Cabinet and the demand requires 2x240mm² Al cables for current rating the fuse size is 400A.

Note 1: Fuse size is the best match to the customers agreed Maximum Demand.
7 ELECTRICAL DESIGN

7.1 Ferroresonance

The phenomenon of ferroresonance is the occurrence of high voltages which may occur when a modest size capacitance is either in series or in parallel with nonlinear inductance, such as an iron cored transformer.

In power systems, the most common place to find ferroresonance is with a three phase distribution transformer energised through an underground cable of moderate length. Under no load, or very light load conditions, the capacitance of the cable is sufficient to precipitate ferroresonant behaviour under single phase switching conditions (e.g. the operation of an HV fuse or asynchronous operation of singlephase 11kV switches such as a drop-out fuse unit.)

The trend towards undergrounding of distribution assets and the increasing installation of URD has resulted in a higher incidence of situations where single phase switching of the cable connecting the transformer could result in dangerous overvoltage due to ferroresonance.

The simplest form of occurrence of a ferroresonance circuit in a URD distribution system is when the single-phase operating switchgear or switch fuses are located some distance away from the transformer itself, with a length of cable joining the switchgear and transformer. A circuit of this sort could occur, for example, where a substation is supplied from a set of EDO’s on a cable termination pole.

In the case where single phase switching is performed directly at the transformer terminals, there is no capacitance in circuit and as a result no abnormal circuit. Since the equivalent circuit of a cable under no load conditions is essentially a capacitive circuit, the presence of the cable introduces a capacitance into the circuit and forms a series LC circuit consisting of the transformer winding, which under no load can be represented by an iron cored inductance, in series with the core-sheath capacitance of the cable. [Note that this circuit applies to 3-core screened and single core cables, ie. There is no core to core capacitance.] The three-phase equivalent circuit is shown in Figure 6.2.1-1.

![Ferroresonance circuit](image)

Figure 6.2.1-1 Ferroresonance circuit

With one phase energised (R phase for example as shown in Figure 6.2.1-1) a series circuit is formed consisting of the magnetised inductance Lm between R and Y phases and the Y phase core-to-sheath cable capacitance. In parallel with this circuit is a second identical series circuit consisting of the magnetised inductance Lm between R and B phases and the B phase core-to-sheath capacitance. Since each branch of this parallel circuit is identical, the potential between the points Y and B is zero and therefore the magnetising inductance Lm between Y and B phases does not enter into the circuit. Combining the circuit components results in an equivalent series
circuit consisting of a capacitance in series with a nonlinear inductance which is therefore the ferroresonant circuit as shown in Figure 6.2.1-2.

![Figure 6.2.1-2 Equivalent ferroresonance circuit.](image)

It is the interaction of this non-linear inductance in series with the capacitance of the cable that can cause severe overexcitation of the transformer and impose large overvoltages on the HV and LV systems.

7.1.1 Methods of controlling ferroresonance

The four most effective methods of controlling ferroresonance are:

1. three-phase switching;
2. single-phase switching at transformers;
3. resistive load on the transformer; and
4. limiting cable length.

Methods (1) and (4) require action on the part of the system designer. Methods (2) and (3) require special operating procedures to ensure that there is effectively no length of cable being energised or de-energised at the same time as the transformer, or the presence of some load.

Three-phase Switching

The use of ganged three-phase switching is one of the most effective and commonly used methods of avoiding ferroresonance.

Single Phase Switching at Transformers

The practice of switching at the transformer terminals themselves, is a particularly effective means of controlling ferroresonance. By doing this, the cable length between the transformer and the switch is essentially zero and the only possible capacitance in the network is that of the internal capacitance of the transformer.

This is a particularly suitable method and can be applied in distribution systems using single-phase switchgear. Where a cable transformer combination is to be energised, the cable only should be energised and then the transformer. Conversely on de-energising, the transformer only should be de-energised first and then the cable. Both sets of switchgear can then be single phase operating.

Since the critical cable length, which is actually proportional to the critical cable capacitance, is inversely a function of the square of the voltage, the critical capacitance for higher system voltages is quite small and the transformer capacitance can become significant.

Resistive Load on the Transformer

A resistive loading of 2 to 3% is generally sufficient to control ferroresonance. However in a distribution network, alternative supply is often provided by paralleling the low voltage network to
adjoining substations. Should the LV network not be disconnected before HV switching, back energisation of the transformer would occur. Therefore this option is generally unavailable. Similarly on commissioning a transformer, there is usually no load available for this option to be used.

Limiting Cable Length

The derivation of the formula for the critical cable length assumes that the critical length is that which will result in a ferroresonant over-voltage of 2.73 times rated phase-to-ground system voltage. For an 11kV system this is 17.4kV phase-to-ground. This is also equal to the maximum acceptable power frequency voltage on the system. The expression for critical cable length is given by:

\[
I_{crit} = \frac{0.6I_{mag} \% kV.A \times 1000}{1.58 + \frac{C_{cc}}{C_{cs}}} \cdot 62.8(kVr)^2 C_{cs}
\]

Where:

- \(I_{mag} \%\) = transformer magnetising current (typically 0.8% of rated current)
- \(kV.A\) = 3-phase transformer rating (kV.A)
- \(C_{cc}\) = core-core capacitance (\(\mu\)F/km)
- \(C_{cs}\) = core-sheath capacitance (\(\mu\)F/km)
- \(kV_r\) = system nominal voltage (kV)

Inspection of the formula shows that the critical length is:

i) directly proportional to transformer capacity and therefore the cable length for small transformers can be quite small;
ii) directly proportional to transformer exciting current. (Old transformers which were manufactured before cold rolled grain oriented steel was used and had magnetising currents of typically up to 5%, allowed for considerably longer cables than for modern transformers);
iii) inversely proportional to the square of the rated system voltage. (22kV and 33kV systems therefore can have maximum cable lengths of only one quarter and one ninth respectively of the 11kV cable length); and
iv) inversely proportional to the cable core-to-sheath capacitance (since cable capacitance is a logarithmic function of the cable size, this is the least sensitive term in the expression).
The cable lengths given in the above tables are less than the values calculated using the equation. The cables lengths have been adjusted to suit the over voltage withstand capability of the surge arresters.

Other standard cables with cross-sectional area of 400 or greater are not included as the critical lengths are very small. This limitation also extends to 33kV cables.

7.2 Electromagnetic fields (EMF)

Magnetic Fields are fields, resulting from the flow of current through wires or electrical devices, which increases in strength as the current increases. Magnetic fields emitted by underground cables are directly proportional to the distance between cables. The smaller the distance between the cables the smaller the magnetic field emitted at a given point.

Magnetic fields are measured in units of Gauss (G) or Tesla (T). Gauss is the unit most commonly used in Australia. Tesla is the internationally accepted scientific term. Since most environmental EMF exposures involve magnetic fields that are only a fraction of a Tesla or a Gauss, these are commonly measured in units of microtesla (µT) or milligauss (mG), multiply by 10. That is 1µT = 10mG.

Table 7.2-1 lists the distances from Electricity infrastructure at which point it can be expected that magnetic field strength levels will fall below the recommended level for continuous exposure. This applies to electrical infrastructure in the Ergon Energy network and relates to extremely low frequency (under 3 kHz), electric and magnetic fields. These figures define the desirable minimum design clearances from buildings, for which human occupation can be expected for significant periods of time. Other regulatory clearance requirements or design practices will override these values in many cases. The figures are based on maximum generally accepted plant rating practice and in most cases the magnetic field strength levels will be less, however these recommendations will allow for future load growth. Situations which differ from the standard cases listed below, or have higher than usual loads will require an engineering review and should be submitted for approval to the Ergon Energy contact person, in the case of designs carried out externally, or Ergon Energy Asset Management staff for designs carried out internally. Installations such as,
multiple cable installations in a common trench, and Indoor Substations with LV Distribution Boards may come into this category.

For multiple circuits Ergon Energy Line Designers can use ES000904F100 Magnetic Field Calculator.

<table>
<thead>
<tr>
<th>Construction Type</th>
<th>Clearance from Centre Line/Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIDENTIAL</td>
<td></td>
</tr>
<tr>
<td>11kV Underground</td>
<td>*No Limit</td>
</tr>
<tr>
<td>22kV Underground</td>
<td>*No Limit</td>
</tr>
<tr>
<td>33kV Underground</td>
<td>*No Limit</td>
</tr>
<tr>
<td>315kVA Padmount Sub</td>
<td>3</td>
</tr>
<tr>
<td>500kVA Padmount Sub</td>
<td>4.5</td>
</tr>
<tr>
<td>240mm Underground LV Cable</td>
<td>*No Limit</td>
</tr>
<tr>
<td>COMMERCIAL</td>
<td></td>
</tr>
<tr>
<td>11kV Underground</td>
<td>*No Limit</td>
</tr>
<tr>
<td>22kV Underground</td>
<td>*No Limit</td>
</tr>
<tr>
<td>33kV Underground</td>
<td>*No Limit</td>
</tr>
<tr>
<td>315kVA Padmount Sub</td>
<td>4</td>
</tr>
<tr>
<td>500kVA Padmount Sub</td>
<td>5</td>
</tr>
<tr>
<td>750kVA Padmount Sub</td>
<td>6</td>
</tr>
<tr>
<td>1000kVA Padmount Sub</td>
<td>7</td>
</tr>
<tr>
<td>240mm Underground LV Cable</td>
<td>*No Limit</td>
</tr>
<tr>
<td>SCHOOL</td>
<td></td>
</tr>
<tr>
<td>315 Padmount – School</td>
<td>4.5</td>
</tr>
<tr>
<td>500 Padmount – School</td>
<td>5.5</td>
</tr>
<tr>
<td>750kVA Padmount Sub</td>
<td>7</td>
</tr>
<tr>
<td>1000 Padmount - School</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 7.2-1 Layout clearances for magnetic fields

Notes:

- For Padmount transformers, the distances are a radius from the front corner of the enclosure adjacent to the LV switchgear
- The EMF clearance levels are at a height of 1m above ground level
- *No Limit means the maximum magnetic field strength level for a construction does not exceed the limit

7.3 HV & LV Isolators (Links) Capacitive Charging Current Limitation

HV isolators or links are only capable of opening and closing a circuit with ‘negligible current’ when no significant change occurs in the voltage across the terminals. The definition given in the Australian Standard AS 62271.102 High voltage switchgear and controlgear - Alternating current disconnectors and earthing switches for ‘negligible current’ implies currents such as the capacitive currents of very short lengths of cable for rated voltages 420kV and below is **0.5A**. HV
isolators or links are also capable of carrying currents under normal circuit conditions and carrying for a specified time currents under abnormal conditions such as those of short circuit.

Capacitive current on UG cable is dependent on cable size and cable length. The size relates to the distance between cable core and copper wire screens. Therefore the bigger the cable size (the larger the distance between cable core and screens) and/or the longer the cable route length, the quicker the 0.5A limit is reached. For Ergon Energy standard UG cables the maximum allowable cable length connected to HV or LV isolators are given in the Table 7.3-1 and Table 7.3-2 below.

<table>
<thead>
<tr>
<th>Capacitance per phase in microfarads per 1000 metres at 20°C</th>
<th>16mm² Cu</th>
<th>240mm² Al</th>
<th>35mm² Al</th>
<th>185mm² Al</th>
<th>400mm² Al</th>
<th>630mm² Al</th>
<th>185mm² Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging current A/km/phase</td>
<td>0.05</td>
<td>0.14</td>
<td>0.414</td>
<td>0.752</td>
<td>1.043</td>
<td>1.771</td>
<td>1.041</td>
</tr>
<tr>
<td>Maximum allowable cable length (m)</td>
<td>10000</td>
<td>3500</td>
<td>1200</td>
<td>650</td>
<td>475</td>
<td>275</td>
<td>475</td>
</tr>
</tbody>
</table>

Table 7.3-1 Maximum cable lengths for HV and LV links – non-insect protected cables

<table>
<thead>
<tr>
<th>Capacitance per phase in microfarads per 1000 metres at 20°C</th>
<th>16mm² Cu</th>
<th>50mm² Cu</th>
<th>240mm² Al</th>
<th>35mm² Al</th>
<th>185mm² Al</th>
<th>400mm² Al</th>
<th>35mm² Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging current A/km/phase</td>
<td>0.05</td>
<td>0.08</td>
<td>0.14</td>
<td>0.414</td>
<td>0.752</td>
<td>1.043</td>
<td>1.065</td>
</tr>
<tr>
<td>Maximum allowable cable length (m)</td>
<td>10000</td>
<td>6250</td>
<td>3500</td>
<td>1200</td>
<td>650</td>
<td>475</td>
<td>825</td>
</tr>
</tbody>
</table>

Table 7.3-2 Maximum cable lengths for HV and LV links – insect protected cables

7.4 Metallic Pipelines in Close Proximity to High Voltage Installations

Electrical hazards may exist when a metallic pipeline runs in parallel or in close proximity to HV installations. The magnitude of the electrical hazards are dependent on a number of factors such as the distance of the metallic pipeline in relation to the overhead conductor, underground cables or earthing system, the load of the conductor and/or cable, the coating of the metallic pipeline (if any), soil resistivity, fault current magnitude and clearing time, and network configuration (single circuit, double circuit, OHEW, etcetera).

These hazards are often classified into the following categories:

- Low frequency induction (LFI)
- Earth potential rise (EPR)
• Capacitive coupling

Its occurrence is not limited to single-phase or three-phase systems. It is also present in the SWER network. The consequence of such hazards could lead to electric shock, injury or death. It is therefore necessary to design such HV installations to mitigate exposure to an acceptable level.

AS/NZS 4853 Electrical hazards on metallic pipelines provides guidelines to calculate the magnitude of the electrical hazards, and to assess the effectiveness of methods used to mitigate the hazard. It is important to note that the application of the standard is appropriate to any conductive structures that run in parallel or in close proximity to HV installations. Typical examples include: conductive fences made of star pickets connected with a plain or barbed wire, steel post supporting a chainwire meshed fencing, and aluminium pool fencing. The standard approach is based on risk management methodology that requires application of physical and procedural controls that will reduce the risk to an acceptable level. Designers should seek assistance from the Lines Design Engineering Group.
8 CABLES

8.1 HV Cable Data – Non insect Protected

<table>
<thead>
<tr>
<th>PARTICULARS</th>
<th>6.35/11 (12) kV CABLE</th>
<th>12.7/22 (24) kV CABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35mm² Al</td>
<td>185mm² Al</td>
</tr>
<tr>
<td></td>
<td>TRIPLEX TR-XLPE PVC/HDPE</td>
<td>TRIPLEX TR-XLPE PVC/HDPE</td>
</tr>
<tr>
<td>I.I. No</td>
<td>2429942</td>
<td>2429959</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>(103)</td>
<td>(254)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal area of core conductors mm²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>(116)</td>
<td>(404)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum continuous current carrying capacity of 3 single cores in ground (1 circuit) in trefoil formation with 3 cables in 1 enclosure (PVC duct) A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>(105)</td>
<td>(105)</td>
</tr>
<tr>
<td></td>
<td>Design maximum conductor operating temperature (°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Normal</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>(b) Emergency (2 hour)</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>(c) Short Circuit</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Positive and negative sequence impedance at 50Hz of completed cable (resistive and reactive components) at max. operating temperature Ω/km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.11 + j0.143</td>
<td>0.211 + j0.110</td>
</tr>
<tr>
<td></td>
<td>Zero sequence impedance at 50Hz of completed cable at 20°C (resistive and reactive components) Ω/km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.10 + j0.0770</td>
<td>0.537 + j0.0501</td>
</tr>
<tr>
<td></td>
<td>Voltage drop - 3 phase @ pf = 0.9 mV/A/m</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>Three-phase symmetrical fault rating for 1 second kA</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Capacitance per phase in microfarads per 1000 metres at 20°C µF/km</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td>Fault rating of cable screen kA 1s</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Conductor insulation values (nominal) MΩ/km</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td>Sheath insulation values (nominal) MΩ/km</td>
<td>1000</td>
</tr>
</tbody>
</table>

NOTES:

1. The maximum continuous current rating of the cables is based on the following assumptions:
 - soil ambient temperature 30°C;
 - soil thermal resistivity 1.2° K m/W;
 - cable screens are bonded at both ends;
 - depth of burial 800mm.
 - In brackets () depth burial of 1100mm.

2. Additional cable data can be located in the “Underground Construction Manual” in the “MATERIAL DATA” folder.
8.2 HV Cable Data – Insect Protected

<table>
<thead>
<tr>
<th>PARTICULARS</th>
<th>6.35/11 (12) kV CABLE</th>
<th>12.7/22 (24) kV CABLE</th>
<th>19/33 kV CABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.I. No.</td>
<td>2429967</td>
<td>249975</td>
<td>243829</td>
</tr>
<tr>
<td></td>
<td>243829</td>
<td>249918</td>
<td>2429991</td>
</tr>
<tr>
<td></td>
<td>2429991</td>
<td>2423655</td>
<td>2424984</td>
</tr>
<tr>
<td>Nominal area of core conductors mm²</td>
<td>35</td>
<td>185</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>Insect protection details (a) Material</td>
<td>Nylon</td>
<td>Nylon</td>
<td>Nylon</td>
</tr>
<tr>
<td>(b) Material thickness</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>(c) Construction</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
</tr>
<tr>
<td>Maximum continuous current carrying capacity of 3 single cores in ground (1 circuit) in trefoil formation with 3 cables in 1 enclosure (PVC duct) A</td>
<td>130 (103)</td>
<td>320 (254)</td>
<td>472 (428)</td>
</tr>
<tr>
<td>In trefoil formation with 3 cables in 1 enclosure A</td>
<td>202 (147)</td>
<td>540 (403)</td>
<td>526 (457)</td>
</tr>
<tr>
<td>Design maximum conductor operating temperature (a) Normal °C</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(b) Emergency (2 hour) °C</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>(c) Short Circuit °C</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Positive and negative sequence impedance at 50Hz of completed cable (resistive and reactive components) at max. operating temperature Q/km</td>
<td>1.11 + j0.143</td>
<td>0.211 + j0.110</td>
<td>0.102 + j0.0987</td>
</tr>
<tr>
<td>Zero sequence impedance at 50Hz of completed cable at 20°C (resistive and reactive components) Q/km</td>
<td>2.10 + j0.0770</td>
<td>0.537 + j0.0501</td>
<td>0.278 + j0.0442</td>
</tr>
<tr>
<td>Voltage drop - 3 phase @ pf = 0.9 mV/A/m</td>
<td>1.95</td>
<td>0.418</td>
<td>0.1754</td>
</tr>
<tr>
<td>Three phase symmetrical fault rating for 1 second kA</td>
<td>3.3</td>
<td>17.5</td>
<td>38.2</td>
</tr>
<tr>
<td>Capacitance per phase in microfarads per 1000 metres at 20°C μF/km</td>
<td>0.208</td>
<td>0.377</td>
<td>0.523</td>
</tr>
<tr>
<td>Fault rating of cable screen kA 1s</td>
<td>3.3</td>
<td>10.2</td>
<td>13.5</td>
</tr>
<tr>
<td>Conductor insulation values (nominal) MD/km</td>
<td>11000</td>
<td>6000</td>
<td>4300</td>
</tr>
<tr>
<td>Sheath insulation values (nominal) MD/km</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

NOTES:

1. The maximum continuous current rating of the cables is based on the following assumptions:
 - soil ambient temperature 30°C;
 - soil thermal resistivity 1.2°K m/W;
 - cable screen bonded at both ends;
 - depth of burial 800mm;
 - in brackets () depth of burial 1100mm.

2. Additional cable data can be located in the "Underground Construction Manual" in the "MATERIAL DATA" folder.
8.3 LV Cable Data – Non Insect Protected

<table>
<thead>
<tr>
<th>PARTICULARS</th>
<th>240mm² Al 4 Core Sector XLPE PVC</th>
<th>16mm² Cu 4 Core XLPE PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.I. No.</td>
<td>1634155</td>
<td>1632489</td>
</tr>
<tr>
<td>Nominal area of core conductors</td>
<td>240 mm²</td>
<td>16 mm²</td>
</tr>
<tr>
<td>Maximum continuous current rating in ducts</td>
<td>A 320</td>
<td>A 88</td>
</tr>
<tr>
<td>Emergency two hour current rating factor - cable at 70% load prior to emergency in ducts</td>
<td>A 370</td>
<td>A 95</td>
</tr>
<tr>
<td>Design maximum conductor operating temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Normal</td>
<td>°C 90</td>
<td>°C 90</td>
</tr>
<tr>
<td>(b) Emergency (2 hour)</td>
<td>°C 105</td>
<td>°C 105</td>
</tr>
<tr>
<td>(c) Short Circuit</td>
<td>°C 250</td>
<td>°C 250</td>
</tr>
<tr>
<td>Maximum AC resistance of conductor of completed cable at 50Hz and 90°C</td>
<td>Ω/km 0.162</td>
<td>1.47</td>
</tr>
<tr>
<td>Positive and negative sequence impedance at 50Hz of completed cable (resistive and reactive components)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) At 20°C</td>
<td>Ω/km 0.126+j0.062</td>
<td>1.15+j0.089</td>
</tr>
<tr>
<td>(b) At max. operating temperature</td>
<td>Ω/km 0.162+j0.062</td>
<td>1.47+j0.089</td>
</tr>
<tr>
<td>Zero sequence impedance at 50Hz of completed cable at 20°C (resistive and reactive components)</td>
<td>Ω/km 0.500+j0.062</td>
<td>4.6+j0.089</td>
</tr>
<tr>
<td>Voltage drop - 3 phase</td>
<td>mV/A/m 0.300</td>
<td>2.55</td>
</tr>
<tr>
<td>Three-phase symmetrical fault rating for 1 second</td>
<td>kA 22.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Capacitance per phase in microfarads per 1000 metres at 20°C</td>
<td>µF/km 0.045</td>
<td>0.035</td>
</tr>
<tr>
<td>Insulation megger readings 100 metre section tested with 2.5kV megger - Phase/Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Expected Value</td>
<td>GΩ 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(b) Minimum accepted value</td>
<td>GΩ 0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Insulation megger readings 100 metre section tested with 2.5kV megger - Phase/Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Expected Value</td>
<td>GΩ 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(b) Minimum accepted value</td>
<td>GΩ 0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

NOTES:

1. The maximum continuous current rating of the cables is based on the following assumptions:
 - soil ambient temperature 30°C;
 - soil thermal resistivity 1.2°K m/W;
 - depth of burial 600mm.
 - In brackets () depth of burial 900mm.

2. Additional cable data can be located in the “Underground Construction Manual” in the “MATERIAL DATA” folder.
8.4 LV Cable Data – Insect Protected

<table>
<thead>
<tr>
<th>PARTICULARS</th>
<th>240mm² Al</th>
<th>50mm² Cu</th>
<th>16mm² Cu</th>
<th>16mm² Cu</th>
<th>4mm² Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTICULARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I. No.</td>
<td>2400272</td>
<td>2410371</td>
<td>2400273</td>
<td>2406943</td>
<td>2400260</td>
</tr>
<tr>
<td>Nominal area of core conductors</td>
<td>mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insect protection details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Material</td>
<td>Nylon</td>
<td>Nylon</td>
<td>Nylon</td>
<td>Nylon</td>
<td>Nylon</td>
</tr>
<tr>
<td>(b) Material thickness</td>
<td>mm</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>(c) Construction</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
<td>Extruded</td>
</tr>
<tr>
<td>Maximum continuous current rating in ducts</td>
<td>A</td>
<td>320</td>
<td>171</td>
<td>88</td>
<td>97</td>
</tr>
<tr>
<td>Emergency two hour current rating factor – cable at 70% load prior to emergency in ducts</td>
<td>A</td>
<td>370</td>
<td>190</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>Design maximum conductor operating temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Normal</td>
<td>°C</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(b) Emergency (2 hour)</td>
<td>°C</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>(c) Short Circuit</td>
<td>°C</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Maximum AC resistance of conductor of completes cable at 50Hz and 90°C</td>
<td>Ω/km</td>
<td>0.162</td>
<td>0.494</td>
<td>1.47</td>
<td>1.4</td>
</tr>
<tr>
<td>Positive and negative sequence impedance at 50Hz of completed cable (resistive and reactive components)</td>
<td>Q/km</td>
<td>0.126+j0.062</td>
<td>0.388+j0.082</td>
<td>1.15+j0.089</td>
<td>1.15+j0.140</td>
</tr>
<tr>
<td>(a) At 20°C</td>
<td>Q/km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) At max. operating temperature</td>
<td>Q/km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero sequence impedance at 50Hz of completed cable at 20°C (resistive and reactive components)</td>
<td>Q/km</td>
<td>0.500+j0.062</td>
<td>1.55+j0.082</td>
<td>4.6+j0.089</td>
<td>2.2+j0.055</td>
</tr>
<tr>
<td>Voltage drop - 3 phase</td>
<td>mV/A/m</td>
<td>0.300</td>
<td>0.868</td>
<td>2.55</td>
<td>2.970</td>
</tr>
<tr>
<td>Three-phase symmetrical fault rating for 1 second</td>
<td>kA</td>
<td>22.7</td>
<td>7.2</td>
<td>2.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Capacitance per phase in microfarads per 1000 metres at 20°C</td>
<td>µf/km</td>
<td>0.045</td>
<td>0.038</td>
<td>0.035</td>
<td>0.772</td>
</tr>
<tr>
<td>Insulation megger readings 100 metre section tested with 2.5kV megger – Phase/Phase</td>
<td>QΩ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(a) Expected Value</td>
<td>QΩ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(b) Minimum accepted value</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Insulation megger readings 100 metre section tested with 2.5kV megger – Phase/Earth</td>
<td>QΩ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(a) Expected Value</td>
<td>QΩ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(b) Minimum accepted value</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

NOTES:
1. The maximum continuous current rating of the cables is based on the following assumptions:
 - soil ambient temperature 30°C;
 - soil thermal resistivity 1.2°K m/W;
 - depth of burial 600mm.
 - In brackets () depth of burial 900mm.

2. Additional cable data can be located in the “Underground Construction Manual” in the “MATERIAL DATA”.

8.5 Cable Installation – Design Considerations

8.5.1 Route Selection
Route selection is more than determining the shortest distance. The route of the cable must also be chosen to:

- facilitate the future development of the network
- avoid natural and man-made obstructions that will add to the cost of installation
- avoid environmentally sensitive and polluted areas
- provide safe access for installation and repair
- account for the physical limitations of affecting the pulling of cables (see Section 1.2)

In most regions cable is procured cut to length and, to enable this service, forecasting is required. Designers should also be aware of drum lengths of uncut cable for when cut lengths are not possible, or available, as this may need to be taken into account in determining the route.

Joint locations should be avoided where future access will be difficult (under paved areas / public activity areas) and close to conduit ends that enter inaccessible areas. This must be balanced with the need to keep the number of joints to the minimum practical.

It is inevitable that, over time, short lengths of cable will be left, more than required for other applications. The cost of high voltage cable makes it desirable to use these short lengths, however, this needs to be balanced with the cost of the joints and the potential increase in risk to reliability associated with joints.

Joints are designed to match the performance of the cable, but, are subject to more risk because of the environmental conditions during installation and workmanship variables.

As a design rule the number of joints in a piece of cable, that would otherwise be available in a single piece, should be limited to one and the cost benefit of the short lengths should be 20% > salvage value of the cable + cost of joints.

8.5.2 Cable Pulling
Designers must be conscious of the factors affecting the pulling of cables. A poor design can result in making the cable pull impossible without damage to the cable.

The Underground Construction Manual MATERIAL DATA, drawings set out the minimum bending radii and maximum pulling tensions and the following demonstrates, in a practical example, how designers need to confirm the practicality of their designs.

Calculation of Pulling Tensions
The approximate pulling tension required to install cables can be calculated by the following formula. A more comprehensive guide can be found in C(b)2 – 1989 Guide to the Installation of Cables Underground.

\[T = T_0 + \mu WL \]
\[T = T_0 e^{\mu \theta} \]

(straight sections) and
(for bends)

Symbols used:

\[T_0 \quad = \quad \text{Tension at the commencement of a section (N)} \]
Calculations on reasonably flat ground will only need to consider the horizontal plane but if there is significant inclines the following should be applied:

\[T = T_0 \pm WL (\sin \theta \pm \mu \cos \theta) \]

[-ve for declines or +ve for inclines]

For upward and downward, concave and convex bends the same approximate formula for bends shown above applies.

The following is given as an example for an installation on level ground of an 11kV, 185mm² Al TRIPLEX cable in conduit without lubricant. Mass of the cable is 5.4 kg/m.

For new clean conduits \(\mu \) can be assumed as 0.3.

From the formula it can be seen that the affect of bends is a multiplier of the tension in the cable entering the bend and the magnitude of the multiplier increases with the magnitude of the angle of the bend. Consequently the direction in which the cable is pulled should be chosen so that bends are in the section closest to the feed end rather than the pulling end and angles of deviation should be kept as small as possible. This is demonstrated in the worked example below.

<table>
<thead>
<tr>
<th>Angle of Bend in Degrees</th>
<th>Value of (e^{\mu \theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu = 0.7)</td>
</tr>
<tr>
<td>15</td>
<td>1.2</td>
</tr>
<tr>
<td>30</td>
<td>1.44</td>
</tr>
<tr>
<td>45</td>
<td>1.73</td>
</tr>
<tr>
<td>60</td>
<td>2.08</td>
</tr>
<tr>
<td>75</td>
<td>2.50</td>
</tr>
<tr>
<td>90</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 8.5-1
Pulling from A to F

Tension at B \[T_1 = T_0 + \mu WL \]
\[T_1 = 0 + 0.3 \times (5.4 \times 9.81) \times 20 \]
\[T_1 = 318 \text{ Newtons} \]

Tension at C \[T_2 = T_1 e^{\mu \theta} \]
\[T_2 = 318 \times 1.27 \]
\[T_2 = 404 \text{ Newtons} \]

Tension at D \[T_3 = 404 + 0.3 \times (5.4 \times 9.81) \times 30 \]
\[T_3 = 881 \text{ Newtons} \]

Tension at E \[T_4 = 881 \times 1.17 \]
\[T_4 = 1031 \text{ Newtons} \]

Tension at F \[T_5 = 1031 + 0.3 \times (5.4 \times 9.81) \times 100 \]
\[T_5 = 2620 \text{ Newtons} \]

Pulling from F to A

Tension at E \[T_1 = T + \mu WL \]
\[T_1 = 0 + 0.3 \times (5.4 \times 9.81) \times 100 \]
\[T_1 = 1589 \text{ Newtons} \]

Tension at D \[T_2 = T_1 e^{\mu \theta} \]
\[T_2 = 1589 \times 1.17 \]
\[T_2 = 1859 \text{ Newtons} \]

Tension at C \[T_3 = 1859 + 0.3 \times (5.4 \times 9.81) \times 30 \]
\[T_3 = 2336 \text{ Newtons} \]
Tension at B \[T_4 = 2336 \times 1.27 \]
\[T_4 = 2967 \text{ Newtons} \]

Tension at A \[T_5 = 2967 + 0.3 \times (5.4 \times 9.81) \times 20 \]
\[T_5 = 3285 \text{ Newtons} \]

Pulling from F to A requires 25\% more effort than pulling from A to F.

The side wall force is also an important factor to be considered. It shall be limited to 1450kg/m for PVC or HDPE sheathed cables and is calculated using the following formula:

\[F = \frac{T}{R} \]

8.5.2.1 Cable Pulling Tension Calculator

The program is designed to allow the calculation of the winching tension required to pull a cable through a trench or duct in a predetermined path. The calculator also calculates the tension should the cable be pulled in the reverse direction. Additionally, the side-wall force is also calculated for those cables that pass through bends in the path. The calculator has been specifically designed to cover the Ergon Energy Standard range of LV, 11kV, 22kV and 33kV cables.

Complex route geometries must first be subdivided into simple subsections, each identifiable with one of the basic shapes shown below. The formula accompanying each illustrated shape gives a determination of the tension (T) imposed upon the leading end of a cable as it exits from the section when the tension (T_0) at the commencement of that section is known.
8.5.3 Conduits

Ergon Energy's practice is to use conduit for all cable installations. This has been found to be the most practical way to coordinate the works with the available resource.

Conduit also aids in the replacement and modification of the network.

Underground Construction Manual TRENCHING drawings set out trenching arrangements used regionally.

RAMS will decide whether to include spare conduit/s to cater for future development of the network.

The provision of a spare conduit can save considerable future cost and community disruption. **But** the provision of a spare conduit that will never be used is a sunk investment for which the business will never derive a return. Consequently prudent judgement is required, that is made with the best available information and knowledge of the cost to the business.
The following **design rules** apply:

Spare conduits should be installed in the following circumstances to meet future HV network needs:

- Where the RAM identifies a future network requirement
- Where the SDO / RAC identifies a future supply requirement
- In CBD precincts, the number is to be determined in consultation with the RAC and the SDO
- In locations where future access to the cable will be impossible or extremely difficult
- Along designated routes where future communications will be required
- In other situations, with the endorsement of the RAC or the SDO
- When installing spare conduit attach an Electronic marker ball to the end of each conduit run to aid in locating the conduit/s for future use.

Designers must consult the RAC and/or SDO as appropriate.

8.5.3.1 Maximum Continuous HV Cable Runs

Cable is installed between plant and equipment in the network creating points at which the cable can be isolated and accessed. Generally the distances involved cause no network operational management issues, but, where cable runs become long, consideration must be given to the time and difficulty involved in identifying and isolating faults and the limitations of test equipment.

Most fault location equipment has the capability of locating faults on long cable runs (10-20km using wave reflectometry and even further with bridge networks). However, the accuracy diminishes and the interpretation of results becomes more difficult with distance, making the pin point location of any faults much slower. The cable route may also need to be traced before fault location is identified, causing greater delays.

HV Cable testing equipment (VLF proof tests) has a maximum reach of 5km.

Cables runs can be broken up using cabinets, cable terminations and connecting bus work. Switchgear should not be used in the cabinets as the incidence of faults will be rare and the location will have no operational purpose in the network.

The installation of “Fault Indicators” will enable the faulted section of cable to be identified.

The use of cabinets will impact on the cost of projects (diminishing with distance) and their use can only be justified where the limitations discussed previously apply. As a **design rule** cabinets should be employed where the continuous length of cable would otherwise be 4 km or greater, having regard for the network arrangement and the customers affected.

Designers must consult the RAC and the SDO before proposing the use of cabinets.

8.6 Cable Ratings

8.6.1 General

The continuous ratings of the standard range of cables are given in Sections 8.1 to 8.4. It should be noted that the ratings are based on assumptions regarding the environment and installation conditions listed.

Cumulatively these will generally be conservative in order to cover the range of conditions that will apply throughout the State. Conversely in extreme environmental and installation situations the
assumptions may not be sufficient for local conditions and it is prudent to review these against local conditions on all projects. The use of CYMECAP software is recommended to determine cable ratings in this instance.

All zone substation exit and critical feeder cables shall be fully designed and must take into account the factors listed in the following sub-sections.

8.6.2 Soil Thermal Resistivity (\(\rho\))

Soil Thermal Resistivity (STR) is the measure of the cable backfill bedding materials’ ability to transfer heat, generated by cable losses, away to the general environment (usually to the atmosphere). It is a product of soil composition, texture, moisture content and compaction.

The figure used for the ratings in the above drawings is \(\rho = 1.2 \ ^\circ\text{K} \ \text{m}/\text{W}\). This is conservatively representative of most clay based soils in Queensland (CSRIO figures for around Townsville are about \(1.0 \ ^\circ\text{K} \ \text{m}/\text{W}\)). Coarse dry sand scoria, punis and similarly structured materials should be avoided (\(\rho \) up to \(6.0 \ ^\circ\text{K} \ \text{m}/\text{W}\) in extreme cases) as backfill material and replaced with a fine particle material such as loams with some clay content or fatty sands. Refer to Table 8.6-1 for a general guide to the thermal resistivity of different materials. These are general guides only and actual thermal resistivity of the soil can be identified by testing.

Substation exit cables are at greatest risk of exceeding their rating as they must carry the full feeder load and sometimes exposed to overloads. Controlled backfill material (flowable thermal backfill) should be used in this situation and where a maximum rating of the cable needs to be assured the use of manufactured material is appropriate.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Resistivity</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K.m/W</td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td>4 (Large duct)</td>
</tr>
<tr>
<td>Air (still)</td>
<td></td>
<td>6 (Normal duct)</td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td>0.0045</td>
</tr>
<tr>
<td>Asphalt</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Backfill - FTB</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Backfill - stabilised</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Bentonite</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Concrete (dry)</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>0.0026</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td>0.0286</td>
</tr>
<tr>
<td>PVC duct</td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Stainless steel</td>
<td></td>
<td>0.0617</td>
</tr>
<tr>
<td>Steel - mild for armouring</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Water (fresh)</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Water (sea)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLPE - semiconductive</td>
<td></td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 8.6-1 Material thermal resistivity

In recent years, the Advance Analysis Ratings Group has progressed drastically in this area with the group acquiring a test laboratory based in Townsville. As a result, regionally based sources of
thermal backfill bedding materials have been investigated and approved on a project by project basis.

8.6.3 Soil Temperatures

The temperature gradient through the soil to the atmosphere is the driving force that transfers the heat generated by cable losses, away to the atmosphere.

The ratings in the Sections 8.1 to 8.4 are based on soil temperatures of 30 °C and a summer peak demand. It will be conservative for most southern and inland applications but has been adopted for standardisation. If additional rating is required for particular applications, refer to Advance Analysis Ratings Group in determining a rating based on the local conditions.

<table>
<thead>
<tr>
<th>Location</th>
<th>Summer (Dec-Mar) maximum temperature</th>
<th>Winter (Jun-Aug) maximum temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigalow</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Brisbane</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>Cairns</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>Charleville</td>
<td>34</td>
<td>23</td>
</tr>
<tr>
<td>Mt Isa</td>
<td>34</td>
<td>27</td>
</tr>
<tr>
<td>Rockhampton</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Townsville</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Warwick</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Weipa</td>
<td>33</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 8.6 - 2 Ground temperatures at 1,000mm depth

8.6.4 Depth of Cover

The rating of cables decreases with an increasing depth of cover over the cable. This is because the heat generated by cable losses needs to escape to the atmosphere. Putting the cable deeper increases the length and hence the thermal resistance of the escape path.

The ratings in Section 8.1 and 8.2 are based on depths of 800mm and 1100mm and the ratings in Section 8.3 and 8.4 are based on depths of 600 and 900mm. It is often necessary to go deeper under other services or other obstructions. As a design rule this can be ignored for rating purposes provided that the length of extra depth does not extend any further than 6 metres. It can be assumed that sufficient heat will be conducted along the conductor core for short distances to maintain core temperatures within manageable tolerances. Particular care must be taken at substation exits where rating is more critical.

Where a cable needs to be laid at a greater depth than normal, designers should seek assistance from the Lines Design Engineering Group.

8.6.5 Mutual Heating Affects

Where a number of cables are laid in proximity there is a combined heating affect that raises the temperature of the cores in order to disperse the additional heat. This means that the cables must
be derated to avoid core temperatures that will damage the cable dielectric. The separation of cables and the number of cables in proximity will determine the amount of de-rating necessary (group rating factor).

The ratings in the above drawings are based on a single circuit. For multiple circuits in a flat configuration, a group de-rating factor should be applied.

Group rating factors that account for the mutual heating of adjacent cables are provided in the table opposite. Designers should seek the assistance from the Lines Design Engineering Group for different configuration.

8.6.6 Conduit

Placing cable in conduit de-rates the cable as the air space in the conduit has a higher thermal resistance than the surrounding soil. There are however, other good reasons for using conduit and this is currently Ergon Energy practice.

If there is a need to improve the rating of a cable in conduit the conduit can be filled with “Bentonite” or a similar product. The affect of the conduit can then be ignored for rating purposes.

8.6.7 Cyclic Rating Factors

Cables laid in the ground have a thermal inertia and consequently there is a thermal time constant associated with heating and cooling cycles.

The ratings given in Section 8 are a continuous rating for simple application, however, this will be conservative for some customer classes; e.g. domestic residential.

For particular applications where rating is critical a cyclic rating factor can be determined based on knowledge of the daily load curve.

As a general guideline Table 8.6-2 shows the de-rating factors applied on cables in single way ducts laid on the same horizontal plane.

<table>
<thead>
<tr>
<th>Number of ducts in group</th>
<th>Group rating factors for triplex cables in single way duct, horizontal formation - Refer cable Data sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum separation</td>
</tr>
<tr>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>0.71</td>
</tr>
<tr>
<td>6</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 8.6-2 De-rating factors for single way ducts on the same horizontal plane
Designers should seek the assistance from the Lines Design Engineering Group where application of a cyclic loading factor is required.
9 EARTHING

9.1 Earthing System

9.1.1 CMEN
The following deals with the treatment of high voltage earthing systems with respect to the low voltage earthing systems.

The Electrical Safety Code of Practice 2010 issued in conjunction with the Queensland Electrical Safety Act 2002 and Electrical Safety Regulation 2013 sets out earthing practices for distribution networks. Ergon Energy considers the Common Multiple Earth system (CMEN, i.e. the bonding of the two systems) as the preferred system. Studies undertaken, assessing the associated risks, support this view so where it is possible to meet the criteria for CMEN connection this should be done.

The arguments supporting CMEN and the criteria for connection of CMEN Earthing systems are set out in NA000403R481 Guideline for the Adoption CMEN Earthing System document.

It will not always be possible for physical reasons and reasons of cost to meet the criteria for CMEN. Designers must be diligent in doing their assessment for CMEN connection as the common earthing resistance value required for the padmounted substation is not normally sufficient, alone, to hold the voltage rise of the earthing system at a safe level across the range of prospective fault levels possible. Most situations will require the interconnection of the LV with adjacent substations for the arrangement to operate safely.

For URD installations a CMEN system is generally required. In isolated developments consideration should be given to using an interconnecting LV cable or extending the HV earth along the cable trench to enable it to be bonded to an existing LV network if such exists. Refer Section 5.3 for site requirements.

For isolated supplies such as Commercial or Industrial padmounted substations consideration should be given to using an interconnecting LV cable or extending the HV earth along the cable trench to enable it to be bonded to the existing LV network.

The Underground Construction Manual, EARTHING drawing No’s 5013 and 5123 sets out the earthing arrangements and requirements for 11kV and 22kV padmounted substations respectively.

9.1.2 Separate Earthing
Where the criteria set out in NA000403R481 Guideline for the Adoption CMEN Earthing System for CMEN connections cannot be met the HV and LV earth will be separated.

The Underground Construction Manual, PADMOUNTED SUBSTATIONS drawings define site size and requirements for 11kV and 22kV padmounted substations.

The Underground Construction Manual, EARTHING drawings set out the earthing arrangements and requirements for 11kV and 22kV padmounted substations.

9.2 CABLE SCREEN EARTHING

9.2.1 General
The metallic screens of cables are designed to provide an effective earth return path for fault current resulting from failed equipment and cables. This enables the speedy detection and isolation of the faulted equipment from the network by protective devices and switchgear. There will, of
course, generally be discontinuity in the path because of connections to the overhead lines and plant and equipment. At these locations the screen must be effectively earthed and the following provides guidance on how this should be done.

9.2.2 Zone Substations Exits

9.2.2.1 Earthing Options

Option 1 - Earth Both Cable Ends

Connection of the cable screen at the substation to the substation earth provides the most secure and reliable fault return path. It does however, transfer potential rises appearing on the substation earth out into the distribution network. This includes not only rises associated with disturbances on that feeder, but also with that on other feeders, the subtransmission network and those internal to the substation, but the substation earth is designed to manage these at safe levels. The magnitude of the fault current on distribution feeders is a maximum for a fault at the zone substation because of the low fault impedance. The cable, if connected to the substation earth, must have sufficient capacity to pass the prospective fault current without damage to the cable. The damage being a result of heating (I^2t) affects and governed by the upstream fault impedance and the performance of protection and circuit breakers in clearing the fault.

Maximum fault levels at Zone Substations for line-to-ground faults (June 2015 Normal) are normally considered to be:

- 11kV – 20.0 kA for 1 sec
- 22kV – 13.1 kA for 1.25 secs

For a cable screen to experience these currents the following coincident contingencies would be required:

- A single phase-to-ground bolted fault at the remote end of an exit cable.
- A primary plant or protection failure.
- All fault current returns in the cable screen.
- The process being adiabatic (no heat loss or transfer)
- All station transformers installed and connected.
- All the above occurring at a station with slow back-up clearing times.

Ergon Energy uses both single core and triplex cables for zone substation exits. Single core cables laid in a touching trefoil arrangement can be considered as a triplex cable. As the screens of the cable cores are insulated from one another, an electrical potential will be induced on the cable screens by mutual electromagnetic induction. The magnitude of the voltage is a function of the current being carried, the length of the cable and the spacing of the cores. Earthing both ends of the cable will eliminate this voltage, but causes a current to flow through the screen, resulting in heat and de-rating the cable. The symmetry of a touching trefoil arrangement minimises the losses (<5%) through cancellation of most of the voltage induced, but care must be taken with single core cables as losses rise quickly with loss of symmetry and separation of the cores.

Option 2 - Earth the remote End Only of the Exit Cable

Earthing the remote cable end would appear to eliminate all the issues associated with option 1.

- The size of the cable screen is not material as no current from faults can pass directly through it to the station.
- No circulating currents can flow in single core and triplex cables screens.
- Does not extend the station earth into the distribution network.
There are however other issues.

The passage of fault current from both an exit cable fault or through fault must be returned via the ground and one practice is to install an additional earthing conductor with the substation exit cable to minimise any transfer (step and touch) potential.

For single core and triplex cables a voltage will exist on the open cable screen end. This can be insulated, but, it would be prudent to limit its level which will place constraints on the maximum length of a cable exit. For single core cables this voltage will be a minimum for a touching trefoil arrangement but increases with core separation.

For single core and triplex cables sheath voltage limiters may be required at the open screen to manage transient voltages induced by fault currents, lightning surges and switching surges that could potentially puncture the sheath or cause a “flash over” at the screen termination.

CYMECAP can be used to determine the standing voltage on the sheath during transient conditions.

Signage will be required to identify the use of single point bonding to mitigate the standing voltage hazard.

9.2.2.2 Earthing Policy at Zone Substation Exits

Design Rule - Screens of all exit cables are earthed at both ends of the cable unless otherwise approved by Line Design Engineering and Substation Standards groups.

The ratings given in for 3 x 1C cables and triplex cables in Section 8.1 and 8.2 are for a touching trefoil arrangement with both cable ends bonded and earthed.

Where a touching trefoil arrangement cannot be maintained designers should seek engineering advice on de-rating factors or alternative arrangements such as single point bonding, centre point bonding and cross-bonding arrangements.

In some situations, such as close to Generators, fault levels can exceed the above. Engineering advice should be sought in these circumstances.

Feeder rated cables may be used for rural zone stations exits and other special applications. The screen size in this case will not be sufficient for a maximum fault under N –1 contingencies, however, as the risk of achieving a maximum fault in these circumstances is low (refer Section 9.2.2.1) the standard screen capacity of a feeder cable is acceptable.

9.2.3 Earthing of Feeder and Radial Cables

The same general principles apply in the earthing of feeder and radial cables as for substation exit cables.

Design Rule - Screens of all feeder and radial cables are earthed at both ends of the cable unless otherwise approved by Distribution Network Standards and Line Design Engineering groups.

The screen capacity for a feeder cable has been set as 10kA for 1 second, which is consistent with industry practice and represents a low risk balance of the range of fault levels experienced along a feeder.
The screen capacity of a radial cable has been set as 10kA for 0.1 of a second, which is consistent with industry standards and protection practice.

Long cable runs require earthing at (disconnect) cabinets (refer Section 8.5.3.1). Where required current rating approaches the maximum allowable for the cable, cross bonding of cable screens may be required. Engineering advice should be sought if this be the case.

9.3 LOW VOLTAGE EARTHING

9.3.1 General
The different earthing systems used by Ergon Energy (CMEN, Separate Earthing) are discussed in detail in Section 9.1. In this section it is not intended to go over earthing philosophy again, but to set out where the LV underground cable network, beyond the substation, should be earthed. This will apply regardless of the earthing system employed.

9.3.2 Earthing at Pillars (Design Rules)
An earth must be fitted at the end Supply Pillar of each radial feed of the main’s cable (240mm² Al). Cross road pillars are not normally earthed.

An earth must be fitted at every 4th Supply Pillar on a circuit, but must be no further than 180m from the furthermost consumer’s switchboard.

An earth must be fitted at every:
- Linking Pillar
- Commercial and Industrial Pillar
- Distribution cabinet.

Earths must be fitted in accordance with the underground Construction Manual, EARTHING Drawing No 5085.

Notwithstanding the above rules the location of earthing should provide reasonable equality in distribution along a circuit.

9.3.3 Earthing at OH LV Cable terminations
An earth will be fitted at every LV OH cable termination. Due to the various combinations of pole mounted equipment associated with a cable termination pole, including earthing requirement, earthing of these poles is included in Overhead Construction Manual, EARTHING folder.

A MEN connection is required at LV pole terminations.

Metal cable guards must be earthed in accordance with the applicable drawing in Overhead Construction Manual EARTHING.

9.3.4 Earthing of Public Lighting Columns
Conductive public lighting columns are considered as being earthed by their ground mounting. The body of the column must be bonded to the low voltage MEN neutral by a 6mm² Cu earth connection at the terminal panel of the column.

The neutral at the pillar end of the public lighting cable must be connected to the neutral bar of the fuse panel in the pillar.
9.3.5 Earthing of Bridge Lighting

Where the pole foundations cannot provide an “effective earth” (e.g. bridges), then a separate earth conductor must be installed clear of the structure to ensure adequate earthing.

Where Ergon Energy Owned & Operated or Gifted and Ergon Energy Operated public lighting is installed on a pedestrian and/or vehicular bridge, a separate earthing system will be required.

This earth conductor will be installed with the supply cabling and shall have a cross section area according to the requirements of the Wiring Rules. The conductor shall have a cross sectional area of not less than 6mm² (Cu).

The earth wire is to be connected to an “effective earth point” at the first appropriate pole or pillar (where there is a MEN point / earth rod). At each pole on the bridge, the earth cable is to be bonded to the pole and the neutral conductor.

The provision of this clause will also apply to public lighting installed on other structures that do not provide an effective earth.

9.4 PROXIMITY TO TELECOMMUNICATIONS

9.4.1 Telecommunications

Electricity and telecommunications infrastructure must co-exist in the same environment as they provide services to the same customers. This proximity can give rise to LFI and EPR (as discussed in Section 7.4) affecting telecommunication systems under high voltage fault conditions on the electricity network. These voltages are short duration but can reach dangerous levels.

The symmetry of cables minimises the affects of LFI and the exposure of underground networks to telecommunications / EPR difficulties are primarily limited to locations where high voltage cables are earthed at substations, pole terminations and switchgear.

The voltage rise that will appear at the earth under fault conditions is dependent on fault levels and soil resistivity and will reduce with distance from the earth.

Required separation from telecommunications assets normally located on footpaths is defined in Underground Construction Manual, EARTHING folder. Further reference can be sited on NA000404R100 Power Coordination Guidelines Agreement between Ergon Energy and Telstra (Distribution Only) for information on separation at Telephone Exchange Sites (including Radio Sites, Above Ground Equipment and Housings).

Designers must ensure that relevant telecommunications companies are advised, with reasonable notice, of details of the route of any proposed underground cables and the location of substations, pole terminations and other equipment that will be earthed along the route.

The Telecommunications Companies have the responsibility of advising Ergon Energy of any situations they believe to be at risk from EPR or LFI. The resolution of this matter is then a joint responsibility of both parties.

Designers can seek engineering advice if assistance is required and further information can be obtained from the publications; ESAA HB100 and the Joint ESAA / ATC EPR Code.
9.5 Approach to Earthing Design for Developer Design and Construct Works and Ergon Energy Works

Approach to earthing design requirements in Developer Design and Construct works and Ergon Energy works is outlined in Table 9.5-1 below. It identifies the action required by the Developer or Developer’s Consultant and Ergon Energy base on the works required (new or extension).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension to existing residential and commercial subdivision development where CMEN is already established and continuing with CMEN</td>
<td>Developer 10 ohms LV disconnected earth resistance required per padmount</td>
</tr>
<tr>
<td></td>
<td>Ergon Energy 1. Retrieve fault level 2. Retrieve protection operating time 3. Determine earthing resistance required</td>
</tr>
<tr>
<td></td>
<td>• >1 ohm – no action required</td>
</tr>
<tr>
<td></td>
<td>• 1< ohm –</td>
</tr>
<tr>
<td></td>
<td>i. Retrieve earthing information of padmounts and MEN – measured or assumed</td>
</tr>
<tr>
<td></td>
<td>ii. Use NA000403R482 spreadsheet to determine new padmount/s earthed resistance</td>
</tr>
<tr>
<td></td>
<td>iii. Ergon Energy to identify and arrange rectification if required</td>
</tr>
<tr>
<td>Extension to existing residential and commercial subdivision development where Separate Earth is already established and continuing with Separate Earth</td>
<td>Developer As per Ergon Energy Construction Manual</td>
</tr>
<tr>
<td>New residential and commercial subdivision development where Separate Earth is going to be established.</td>
<td>Ergon Energy No action required</td>
</tr>
<tr>
<td>Extension to existing residential and commercial subdivision development where Separate Earth is already established but converting to CMEN</td>
<td>Developer Retrieve from Ergon Energy padmount/s earthing resistance</td>
</tr>
<tr>
<td>New residential and commercial subdivision development where CMEN is going to be established, separate to any existing CMEN system.</td>
<td>Ergon Energy 1. Retrieve fault level 2. Retrieve protection operating time 3. Determine earthing resistance required (this may not be required)</td>
</tr>
<tr>
<td></td>
<td>• >1 ohm – no action required</td>
</tr>
<tr>
<td></td>
<td>• 1< ohm –</td>
</tr>
<tr>
<td></td>
<td>i. Retrieve earthing information of padmounts and MEN</td>
</tr>
<tr>
<td></td>
<td>ii. Use NA000403R482 spreadsheet to determine new padmount/s earthed resistance</td>
</tr>
<tr>
<td></td>
<td>iii. Ergon Energy to identify and arrange rectification if required</td>
</tr>
<tr>
<td></td>
<td>iv. Provide to Developer</td>
</tr>
</tbody>
</table>

Table 9.5-1
10 AGREEMENTS

10.1 QR DESIGN REQUIREMENTS

10.1.1 Prior Approval

Where electric lines cross railways, a written application must be lodged (together with a fee) to Queensland Rail in accordance with the “Agreement for Overhead and Underground Electric Lines Crossing Railways in Queensland”. Queensland Rail has 2 weeks in which to reply and may impose terms and conditions on the work. Before any such work commences written notice must be given to Queensland Rail at least 2 weeks prior to when the proposed work is intended to begin.

10.1.2 General

Underground electric lines shall be installed in accordance with the following requirements:

Orientation and Location of Underground Electric Lines

1. Underground electric lines should be orientated so as to pass through QR property in a straight line and within approximately 5° of 90° to the track centreline. This restriction may be relaxed in exceptional circumstances at the discretion of the Rail Manager if the depth of the service is greater than 4m below formation level or if geotechnical investigation shows that the bore will be self-supporting under railway loads.
2. No underground electric lines are to be located under track turnouts or crossovers.
3. No manholes, chambers, pits or anchor blocks are to be installed in QR property.
4. Where QR uses or jointly owns an underground electric line, and where that line runs along the corridor, the alignment will be:
 a. within approximately 1m of the boundary fence;
 b. more than 6m from the toe of a bank or top of a cutting, and;
 c. more than 10m from the nearest rail.

Depth of Underground Electric Lines

1. Where passing under railway tracks, the top of any underground electric line shall be laid at a depth of not less than two (2) metres below rail level and maintained at the depth for not less than three (3) metres beyond the outer rails measured at right angles to the track.
2. Elsewhere within the boundary of the railway, underground electric lines shall be laid at least one (1) metre below ground surface and drain inverts.

Separation

1. Underground electric lines shall be separated by a clear spacing of at least 2m in the horizontal plane from existing pipelines and power and communication cables, unless agreed to otherwise, in writing, by the parties.
2. No underground electric lines will be allowed vertically above / below and parallel to another service or an existing service.
3. Where new underground electric lines are to pass above / below an existing service at 90°, a vertical clearance greater than 450mm should be achieved.
4. No underground electric lines should pass within 5m horizontally of any infrastructure foundation within the boundary of the railway.

Geotechnical Advice

A geotechnical assessment of the ground conditions (soil types and depth of water table) over the length of the bore is required prior to any excavation work commencing on the site for bore holes / tunnels greater than 150mm diameter. For smaller diameter holes, this advice can be sought at Ergon Energy’s’ discretion. This information is to be used to determine the most suitable method for the work and the detailed equipment requirements to successfully complete the bore without causing any disruption to the track and ground surface.
Installation
These requirements apply to low and high voltage cables. There are three acceptable methods of installation.

1. Trench
This method is suitable for HDPE conduits where the top of a protection slab (above the conduits) is between 2m and 3m depth below both formation level and ground level. An enveloping pipe is not required in this case. Protection from future excavation will be achieved with the use of a protection slab similar to that described in AS4799. The slab is to be minimum 150mm thick reinforced concrete designed to resist excavator impact. It is to be 600mm greater in width than the group of conduits and is to be placed centrally over the conduits. Electrical warning tapes are also to be used. The minimum depth of the top of the conduits below the underside of the slab is to be 300mm. Groups of conduits below the slab are to be protected by backfilling the trench with flowable grout (approximately 2MPa) up to a minimum of 300mm above the uppermost conduit.

2. Directional Drilling
HDPE conduits (without an enveloping pipe) may be used where the depth of the top of the bore is greater than 3m below both formation level and ground level. The conduits are to be installed within a single bore with a maximum diameter of 350mm. If a larger bore is necessary, a different installation method must be used.

3. Micro-tunnelling
This method can be used in conjunction with an enveloping pipe of HDPE where the top of the bore is between 2m and 3m below formation level and ground level.

Cable Markers
1. Cable markers shall be installed adjacent or above the route of the underground electric line as follows:
 a. where the underground electric line enters and leaves the boundary of the railway;
 b. at changes in direction of the route of the underground electric line;
 c. at distances between consecutive markers of the lesser of 200m or line of sight;
 d. at all drains or other points of potential hazard;
 e. at the ends of the under track crossing (the end of the under track crossing is taken as the point three (3) meters beyond the outer rail or toe of the embankment).
2. Cable markers shall be maintained by Ergon Energy PROVIDED THAT Queensland Rail shall repair, reinstate or replace as applicable any cable markers which have been damaged or removed by Queensland Rail or any of its servants, agents or workmen.
3. Cable markers shall comply with the following requirements:
 a. Stand at least 800mm out of the ground, to the bottom of the marker plate
 b. Be of non-combustible material for the marker plates and of at least fire-resistant material for the pole.
 c. Wording on markers be legible, permanent, and formed in a non-combustible medium, or otherwise approved by QR.
4. Descriptive wording and instructions that are shown on cable markers shall face the railway tracks.
5. Wording on cable markers shall include the following:
 a. The owner’s name.
 b. A warning of the presence of a buried service.
 c. The nature of the buried service.
 d. Contact advice in the event of an emergency.

Upon Completion
Upon completion of work, Queensland Rail must again be notified promptly in writing, and a copy of the “as constructed drawings” of the infrastructure, the subject or the result of the work is to be provided. These drawings shall be prepared in accordance with construction and design methods approved by a professional engineer or certified by a professional engineer if required by law.
11 APPENDIX A – CABLE PULLING TENSION CALCULATOR INSTRUCTION

To use the program

- Select the Calculator sheet.

- Enter a description of the current design in the text area Your Reference. This description will be displayed on any electronically stored or hard copy design produced.

- Use the Cable drop down box to select the cable for this pull from the list of all Ergon Energy Standard cables. The technical data on the chosen cable and the values used as the coefficient of friction in the calculations are shown to the left of the screen, below the Cable drop down box.

- Each cable pull can be divided into a number of pull sections. There are eight section types and they are listed under Cable Section Types. Click on the section name to view an example of the particular section type. Each section type has been assigned a number from 1 to 8.

- In the row Section Number 1, select the Cable Section Type (number from 1 to 8) from the drop down list.

- If Cable Section Type 1 is selected, enter the Section Length in the respective column.

- If Cable Section Type 2 or 3 is selected, enter the Section Length and the Angle of Incline in the respective columns. The Slope Calculator sheet can be used to determine the angle of incline. Enter the Rise and the Run in the respective text area, and the program will calculate the angle.

- If Cable Section Type 4 is selected, enter the Angle of Subtended Arc in Bend and the Section Radius (which will be 1.83) in the respective columns.

- If Cable Section Type 5, 6, 7 or 8 is selected, enter the Angle of Subtended Arc in Bend and the Section Radius (which will be 1.2) in the respective columns.

- In the row Section Number 2, select the Cable Section Type from the drop down list and enter the required information as stated previously. Continue this process for all of the cable sections in the cable pull.

- To complete the calculation click the Click to Calculate Values button.

- The results of the calculation are shown in the table adjacent to the Click to Calculate Values button. The Pull Tension Value, Pull Tension Limit, Side-Wall Tension Value and Side-Wall Tension Limit are all displayed for the specified cable pull and for a pull in the reverse direction. Intermediate pull tension and side-wall force values are also shown for each cable section in the table below.

- Read the Messages box to determine if there are any problems associated with the values calculated for this pull.
The spreadsheet can be printed and saved as per a normal Excel spreadsheet.