1. PURPOSE AND SCOPE

The purpose of this Standard Work Practice (SWP) is to standardise and prescribe the method for implementing an 'Earth Resistivity Test' for the purpose of determining the earth resistivity at a particular site.

This applies to the soil testing of new earthing systems, with the purpose of providing accurate soil models to achieve acceptable safety criteria designs. It is also used to provide data when testing existing earthing systems for safety criteria compliance.

The testing procedure is limited to the “Wenner” method of resistivity testing.

2. STAFFING RESOURCES

Adequate staffing resources with the competencies to safely complete the required tasks as per MN000301R165: 8 Level Field Test Competency.

These competencies can be gained from, but not limited to any or all of the following:-

- Qualifying as an Electrical Fitter Mechanic
- Qualifying as a Technical Service Person
- Training in the safe use of relevant test equipment

Requirement for all live work:

- Safety Observer (required for all “live work” as defined in the ESO Code of Practice for Electrical Work)

All resources are required to:

- Hold current licences for any vehicles and equipment they may be required to operate

Required Training

Staff must be current in all Statutory Training relevant for the task.

All workers must have completed Field Induction or have recognition of prior Ergon Energy Field Experience.

Contractors must have completed Ergon Energy's Generic Contractor Worker Induction.

3. DOCUMENTATION

Maps and site plans – use these for marking where test readings were taken, these may include but not be limited to:

- Local map – Can give useful information on surrounding area
- Geological/Soil survey map (Should be available from local council)
- Civil Works - Site Clearing Plan
- Civil Works - Earth Grid Plan
- Google earth EC (Will show existing network).

Geotechnical Report

SP0506, Substation Primary Plant and Secondary Systems Field Testing SWP

SP0506R01. Carry Out Field Testing Job Safety Analysis

SP0522C01. Earth Resistivity Test Report

Test Equipment Manuals
4. KEY TOOLS AND EQUIPMENT

All equipment used is to be calibrated and within test due date.

- Earth Resistivity Testing
 1. Earth Resistivity Tester/Injection test unit
 2. Ground Grid Conductor Locator
 3. Flexible Insulated Wire on Easy-to-Spool Reels
 4. Earth test electrodes (stake)
 5. 240V Portable Generator
 6. Measuring Wheel/Measuring tapes (100m)
 7. Hammers

- Suitable barriers and warning signs for erection at the source and the remote end to prevent inadvertent contact with 'LIVE' equipment if deemed necessary.

- PPE including full-length protective cotton clothing, safety footwear, safety helmet. All PPE to be inspected and confirmed within test date (where applicable) prior to use.

Additional PPE Required

- Additional PPE as required: brim for safety helmet, leather work gloves, class 00 gloves, hearing protection, safety eyewear, high visibility clothing when working on or near roadways.

- Sun protection to be used when working outdoors.

5. TEST METHOD DESCRIPTION

For the purpose of this SWP only the Wenner method of testing shall be described.

Refer Figure 1. The earth tester pictured injects an AC current into the earth under test from terminal C1 to C2 utilising driven metallic stakes. The internal stakes shown measure the potential difference, and are connected to terminals P1 and P2. The meter will display a **resistance** measurement. This resistance, \(R \), is used in the formula:

\[
\rho = 2\pi aR
\]

Where, \(\rho \) (Rho) is the average soil resistivity to depth \(a \), \(\pi \) being the constant 3.1416. ‘\(a \)’ is also the distance of spacing between the electrodes used in the measurement, which must be equal between each electrode as shown in Figure 1.

The depth shown ‘\(b \)’ **must** be less than \(a/20 \). E.g. At 0.5m spacings the electrodes can only be driven in to a depth of 2.5cm, at 10m they can be driven to 50cm, but can be less.

By completing this testing accurately and with spacings as large as practically possible we obtain details about the soil such as...
whether it is homogenous or has multiple layers, and the apparent resistivity of those layers. This provides valuable information when designing earthing systems for maximum performance economically.

6. WORK PRACTICE STEPS

6.1. Prior to testing
Gather as much information regarding the proposed site where the soil resistivity will be carried out. This should include site maps, maps of surrounding areas, soil surveys, geotech reports and previous test results. Using this information, an estimated model of the soil can be produced (see Appendix for common values of soil resistivity), and proposed test lines can be marked out.

A minimum of two traverses shall be carried out at the proposed site or as close as possible. Further traverses can be carried out remote to the proposed site to reinforce test results.

Factors limiting physical extent of testing should be identified. These factors may include housing developments, metallic fences, water courses/dams, vegetation and the existing electrical network. Other comparable sites can be identified from the soil survey map to enable thorough testing to acceptable soil depths.

Tip: Make sure your earth resistivity meter has a fully charged battery before leaving for site. If possible have two available.

6.2. Carry out an on site risk assessment
Prior to performing this activity, any hazards associated with pre-requisite tasks at the worksite shall be identified and assessed with appropriate control measures implemented and documented in accordance with the Daily / Task Risk Management Plan (CS000501F115) and using reference document Health and Safety Risk Control Guide (ES000901R102).

If any risks cannot be managed or reduced to an acceptable level, do not proceed with the task and seek assistance from your Supervisor.

6.3. On site testing procedure
After completion of the Daily Task Risk Management Plan and arrival at the site to be tested, the following steps should be followed to obtain satisfactory test results:

- Identify the first straight line to be traversed from your drawings/maps. Stake the centre point of the line. Tip: Run out 2 100m tape measures in opposite directions from the centre point to guide the placement of your electrodes.

- Estimate maximum spacing of your electrodes (you should be prepared to go as far as your equipment allows) and run out your current and potential leads to a distance allowing that measurement. Eg. 30m spacings require a minimum of 45m current leads and 15m potential leads. The current and potential leads shall be run on opposite sides of the straight line being measured and as far from each other as practical. This will reduce any inductive effects. Bring both ends of the leads back to the centre point. Note: Care must be taken if using spools wound around metallic drums with magnetic properties. Place current and voltage spools at 90° angles to each other to reduce any transformer effect.

- Starting at a spacing of 0.5m, place the 4 electrodes in a straight line taking care not to exceed the a/20 depth. This would place your current electrodes at 0.75m from the centre point and your potential electrodes at 0.25m from the centre. Connect the electrodes to the meter as shown in Figure 1 and measure the resistance, record on the test
report. See below for common troubleshooting. Note that when the meter is on all electrodes should be treated as live unless proven otherwise. Meter should be turned off between measurements and before anyone touches exposed conductors or electrodes.

- Reverse your current and potential leads at the meter, ie. C1-P1, P1-C1, C2-P2, P2-C2 and measure the resistance again and record on the test report. This is a check of the setup and equal spacing of the electrodes. You should get approximately the same result.

- Repeat the two steps above at increasing electrode spacing distances, each spacing distance and resistance measured should be noted on the test report. Tip: Doubling your spacing each time allows a quick check of the soil homogeneity. If your resistance reading halves each time you move your spacing out you are measuring a homogenous layer.

- If possible, enter the data into the electronic copy of the Test Report SP0522C01. Analyse the graph of apparent resistivity vs spacing. This graph will tell you if you have gone to a large enough spacing. Refer Figure 2, this suggests a homogenous soil approximately 350Ωm to a depth of at 64m. No further testing would be required. Figure 3 however shows a change in layer, but further spacing would be required to try and determine the resistivity of the lower layer. Note: This is not as critical if testing for upper layer resistivity for step and touch voltage criteria.

- Repeat this process again for another traverse. You should measure the second traverse line at 90° to the first. Inconsistencies between the two line traverses could suggest buried conductors, adjacent metallic interference or poor test setup. Carry out extra traverses until confident of your results.

- Ensure you have recorded weather conditions including recent patterns and mark your traverse lines on a site plan.

![Figure: 2 – Homogenous Soil]
7. INTERPRETATION OF RESULTS

7.1. Resistivity-Depth Curve
A quick assessment of the layering of the soil model can be obtained from Resistivity-Depth graphs as shown in Figures 2 and 3. However, this is not always the preferred method for determining resistivity value.

7.2. Inverse Slope
The following is an extract from substation standard SS-1-7.3 rev 1.0 written by Mr Qui Dinh. It describes a process of using a graph of $1/(2\pi R)$-Depth to determine soil layer depths and resistivity.

“The equation $\rho = 2\pi aR$ can be written as $a/\rho = 1/(2\pi R)$

The graph of $1/(2\pi R)$ (vertical axis) against a (horizontal axis) will yield resistivity (from reciprocal slope) as a function of depth. Straight line approximations are drawn through the points obtained; the abrupt changes in slope being designated as 'Breakpoints' indicate the change in resistivity layering. Inverse slopes of each straight line segment and the breakpoints give resistivity and layer depth values respectively.”

By interpreting the graph provided on Test Report SP0522C01 and entering the upper and lower points of the slopes the test report will provide the upper and lower layer resistivity values as shown in Figure 4.
8. TESTING TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter reports High impedance at close spacings</td>
<td>Use water (saltwater if you can) to help lower electrode contact resistance. You can also use extra electrodes connected together. Note that distance between the extra electrodes needs to be kept to less than a/20</td>
</tr>
<tr>
<td>Meter reports High impedance at far spacings</td>
<td>Drive electrodes deeper without exceeding a/20. Use water. Try another meter, different type of meter.</td>
</tr>
<tr>
<td>Resistance measurement is different (>5%) when current and potential leads are crossed.</td>
<td>Spacing of electrodes is probably not equal.</td>
</tr>
<tr>
<td>Physically can’t increase electrode spacings to get satisfactory results.</td>
<td>If testing for earthing design it is important to try and get lower layer resistivity. Try and locate an area nearby that has similar soil qualities where you can increase the electrode spacings. Use geotech data if possible. Core sample if necessary (inner city).</td>
</tr>
<tr>
<td>Soil appears to be very low resistivity and homogenous</td>
<td>Could be buried services, do second traverse at 90°. Could be correct, compare to known soil type.</td>
</tr>
<tr>
<td>Differing apparent resistivity between traverses.</td>
<td>Could be buried services. Could be angled layers of soil, check for large land formation nearby. Continue with traverses until confident of soil model.</td>
</tr>
<tr>
<td>Apparent resistivity is very high but ground is wet.</td>
<td>Testing has shown that areas of high rainfall may have high resistivity soil. This has been concluded to be a result of dilution of the salinity of the soil.</td>
</tr>
<tr>
<td>Apparent resistivity seems too low as test is in arid area.</td>
<td>Similar to above, in dry conditions soil salinity can be much higher, and the water table should also be considered.</td>
</tr>
</tbody>
</table>

Figure: 4 – Determination of layer depth and resistivity by inverse slope
9. REFERENCES
ESAA Safe Earthing Systems Design
ANSI/IEEE STD 80 – 1986
Ergon Energy Network Substation Standard – Soil Resistivity
Testing. Doc No. SS-1-7.3

10. APPENDIX
Typical Resistivity Values

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity (Ωm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Water</td>
<td>0.1 – 1</td>
</tr>
<tr>
<td>Loam, Garden soil</td>
<td>5 – 50</td>
</tr>
<tr>
<td>Clay, Chalk</td>
<td>10 – 70</td>
</tr>
<tr>
<td>Ground water, Spring water</td>
<td>10 – 150</td>
</tr>
<tr>
<td>Clay/sand mixtures</td>
<td>4 – 300</td>
</tr>
<tr>
<td>Peat, marsh, mud</td>
<td>5 – 250</td>
</tr>
<tr>
<td>Lake, river water</td>
<td>100 – 500</td>
</tr>
<tr>
<td>Shale, sandstone, limestone, slate</td>
<td>100 – 500</td>
</tr>
<tr>
<td>Rain water</td>
<td>100 – 1000</td>
</tr>
<tr>
<td>Sand</td>
<td>1000 – 3000</td>
</tr>
<tr>
<td>Distilled water</td>
<td>5000</td>
</tr>
<tr>
<td>Coarse sand, gravel</td>
<td>1000 – 10,000</td>
</tr>
<tr>
<td>Igneous rock, granite</td>
<td>10,000 – 400,000</td>
</tr>
<tr>
<td>Ice</td>
<td>10,000 – 100,000</td>
</tr>
</tbody>
</table>